$$B^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^\pm/B^0 ADMIXTURE and $B^\pm/B^0/B_s^0/b$ -baryon ADMIXTURE sections.

See the Note "Production and Decay of b-flavored Hadrons" at the beginning of the B^\pm Particle Listings and the Note on " B^0 - \overline{B}^0 Mixing and CP Violation in B Decay" near the end of the B^0 Particle Listings.

BO MASS

The fit uses m_{B^+} , $(m_{B^0}-m_{B^+})$, and m_{B^0} to determine m_{B^+} , m_{B^0} , and the mass difference.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
5279.4±0.5 OUR NE	W UNCHE	ECKED FIT [5279	9.2 ± 1.8 Me	V OUR 1998 FIT]
5279.3±0.7 OUR NE	W AVERA	GE [5279.8 \pm 1.6	6 MeV OUR	1998 AVERAGE]
$5279.1 \pm 0.7 \pm 0.3$	135	$^{ m 1}$ CSORNA	00 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5281.3 \pm 2.2 \pm 1.4$	51	ABE	96в CDF	$p\overline{p}$ at 1.8 TeV
• • • We do not use t	he followin	g data for average	s, fits, limits,	etc. • • •
$5279.2\!\pm\!0.54\!\pm\!2.0$	340	ALAM	94 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5278.0 \pm 0.4 \pm 2.0$		BORTOLETT	O92 CLEO	$e^+e^- o ~ \varUpsilon(4S)$
$5279.6 \pm 0.7 \pm 2.0$	40	² ALBRECHT	90J ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$
$5278.2 \pm 1.0 \pm 3.0$	40	ALBRECHT	87c ARG	$e^+e^- o ~ \varUpsilon(4S)$
$5279.5 \pm 1.6 \pm 3.0$	7	³ ALBRECHT	87D ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$
$5280.6 \pm 0.8 \pm 2.0$		BEBEK	87 CLEO	$e^+e^- o ~ \varUpsilon$ (4S)

 $^{^1}$ CSORNA 00 uses fully reconstructed 135 $B^0 \to J/\psi^{(')} K^0_S$ events and invariant masses without beam constraint.

$m_{B^0} - m_{B^+}$

	<i>B B</i>		
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
0.33±0.28 OUR NEW UNC	HECKED FIT Error in 0.29 MeV OUR 1	cludes scale 1998 FIT Se	e factor of 1.1. $[0.35~\pm$ cale factor $=1.1]$
0.34 ± 0.32 OUR AVERAGE	Error includes scale fa	ctor of 1.2.	
$0.41\!\pm\!0.25\!\pm\!0.19$	ALAM 9	94 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.4\ \pm0.6\ \pm0.5$	BORTOLETTO9	2 CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
$-0.9\ \pm 1.2\ \pm 0.5$	ALBRECHT 9	00J ARG	$e^+e^- \rightarrow \Upsilon(4S)$
$2.0\ \pm1.1\ \pm0.3$	⁴ BEBEK 8	7 CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
⁴ BEBEK 87 actually measu	re the difference betwe	en half of	E_{am} and the B^{\pm} or B^{0}

⁴BEBEK 87 actually measure the difference between half of $E_{\rm cm}$ and the B^\pm or B^0 mass, so the $m_{B^0}-m_{B^\pm}$ is more accurate. Assume $m_{\Upsilon(4S)}=10580$ MeV.

 $^{^2}$ ALBRECHT 90J assumes 10580 for $\Upsilon(4S)$ mass. Supersedes ALBRECHT 87C and ALBRECHT 87D.

³ Found using fully reconstructed decays with J/ψ . ALBRECHT 87D assume $m_{\Upsilon(4S)} = 10577$ MeV.

$m_{B_H^0}-m_{B_L^0}$

See the B^0 - \overline{B}^0 MIXING PARAMETERS section near the end of these B^0 Listings.

B⁰ MEAN LIFE

See $B^\pm/B^0/B_s^0/b$ -baryon ADMIXTURE section for data on B-hadron mean life averaged over species of bottom particles.

"OUR EVALUATION" is an average of the data listed below performed by the LEP B Lifetimes Working Group as described in our review "Production and Decay of b-flavored Hadrons" in the B^\pm Section of the Listings. The averaging procedure takes into account correlations between the measurements and asymmetric lifetime errors.

		between the measurements and asymmetric lifetime errors.
	<i>EVTS</i>	DOCUMENT ID TECN COMMENT
1.548±0.032 OUR NEW	EVAL	JATION $[(1.56\pm0.04) imes10^{-12} ext{ s OUR 1998 EVALUATION}]$
Average is meaningless.	[(1.5	$53\pm0.032) imes10^{-12}$ s OUR 1998 AVERAGE]
$1.523\!\pm\!0.057\!\pm\!0.053$		5 ABBIENDI 99J OPAL $e^{+}e^{-} ightarrow$ Z
$1.58 \ \pm 0.09 \ \pm 0.02$		⁶ ABE 98B CDF <i>p</i> p at 1.8 TeV
$1.474 \pm 0.039 {+ 0.052 \atop - 0.051}$		⁷ ABE 98Q CDF $p\overline{p}$ at 1.8 TeV
$1.52 \ \pm 0.06 \ \pm 0.04$		5 ACCIARRI 98S L3 $e^{+}e^{-} \rightarrow Z$
$1.64 \pm 0.08 \pm 0.08$		5 ABE 97J SLD $e^{+}e^{-} ightarrow$ Z
$1.532 \pm 0.041 \pm 0.040$		⁸ ABREU 97F DLPH $e^+e^- \rightarrow Z$
$1.61 \pm 0.07 \pm 0.04$		7 BUSKULIC 96J ALEP $e^+e^- ightarrow Z$
$1.25 \ {}^{+ 0.15}_{- 0.13} \ \pm 0.05$	121	6 BUSKULIC 96J ALEP $e^{+}e^{-} ightarrow Z$
$1.49 \begin{array}{l} +0.17 \\ -0.15 \end{array} \begin{array}{l} +0.08 \\ -0.06 \end{array}$		9 BUSKULIC 96J ALEP $e^{+}e^{-} \rightarrow Z$
$1.61 \ ^{+ 0.14}_{- 0.13} \ \pm 0.08$		7,10 ABREU 95Q DLPH $\mathrm{e^{+}e^{-}} ightarrow$ Z
$1.63 \pm 0.14 \pm 0.13$		11 ADAM 95 DLPH $e^+e^- \rightarrow Z$
$1.53 \pm 0.12 \pm 0.08$		7,12 AKERS 95T OPAL $e^+e^- o Z$
• • • We do not use the	followi	ng data for averages, fits, limits, etc. ● ●
$1.54 \pm 0.08 \pm 0.06$		⁷ ABE 96C CDF Repl. by ABE 98Q
$1.55 \pm 0.06 \pm 0.03$		13 BUSKULIC 96J ALEP $e^+e^- ightarrow Z$
1.62 ± 0.12		14 ADAM 95 DLPH $e^+e^- \rightarrow Z$
$1.57\ \pm0.18\ \pm0.08$	121	⁶ ABE 94D CDF Repl. by ABE 98B
$1.17 \ ^{+0.29}_{-0.23} \ \pm 0.16$	96	⁷ ABREU 93D DLPH Sup. by ABREU 95Q
$1.55 \ \pm 0.25 \ \pm 0.18$	76	¹¹ ABREU 93G DLPH Sup. by ADAM 95
$1.51 \begin{array}{c} +0.24 & +0.12 \\ -0.23 & -0.14 \end{array}$	78	⁷ ACTON 93C OPAL Sup. by AKERS 95T
$1.52 \begin{array}{c} +0.20 \\ -0.18 \end{array} \begin{array}{c} +0.07 \\ -0.13 \end{array}$	77	⁷ BUSKULIC 93D ALEP Sup. by BUSKULIC 96J
$1.20 \begin{array}{c} +0.52 \\ -0.36 \end{array} \begin{array}{c} +0.16 \\ -0.14 \end{array}$	15	15 WAGNER 90 MRK2 E_{cm}^{ee} = 29 GeV
$0.82 \ ^{+0.57}_{-0.37} \ \pm 0.27$		16 AVERILL 89 HRS $E_{ m cm}^{ee} = 29~{ m GeV}$

 $^{^{5}\,\}mathrm{Data}$ analyzed using charge of secondary vertex.

⁶ Measured mean life using fully reconstructed decays.

MEAN LIFE RATIO au_{B^+}/ au_{B^0}

au_{R^+}/ au_{R^0} (average of direct and inferred)

1.060 ± 0.029 OUR NEW AVERAGE Includes data from the 2 datablocks that follow this one. [1.02 \pm 0.04 OUR 1998 AVERAGE]

Created: 6/20/2000 14:10

τ_{B^+}/τ_{B^0} (direct measurements)

"OUR EVALUATION" is an average of the data listed below performed by the LEP B Lifetimes Working Group as described in our review "Production and Decay of bflavored Hadrons" in the B^{\pm} Section of the Listings. The averaging procedure takes into account correlations between the measurements and asymmetric lifetime errors.

DOCUMENT ID <u>TECN</u> <u>COMMEN</u>T

The data in this block is included in the average printed for a previous datablock.

1.062 \pm 0.029 OUR NEW EVALUATION [1.04 \pm 0.04 OUR 1998 EVALUATION]

Average is meaningless. $[1.03 \pm 0.04 \; \text{OUR} \; 1998 \; \text{AVERAGE}]$				
$1.079 \pm 0.064 \pm 0.041$		99J OPAL	$e^+e^- ightarrow Z$	
$1.06 \pm 0.07 \pm 0.02$	¹⁸ ABE	98B CDF	$p\overline{p}$ at 1.8 TeV	
$1.110\!\pm\!0.056\!+\!0.033\\-0.030$	¹⁹ ABE	98Q CDF	$p\overline{p}$ at 1.8 TeV	
$1.09 \pm 0.07 \pm 0.03$	¹⁷ ACCIARRI		$e^+e^- ightarrow Z$	
$1.01\ \pm0.07\ \pm0.06$	¹⁷ ABE	97J SLD	$e^+e^- ightarrow Z$	
$0.98 \pm 0.08 \pm 0.03$	¹⁹ BUSKULIC	96J ALEP	$e^+e^- ightarrow Z$	
$1.27 \begin{array}{c} +0.23 & +0.03 \\ -0.19 & -0.02 \end{array}$	¹⁸ BUSKULIC	96J ALEP	$e^+e^- ightarrow Z$	
$1.00 \ ^{+ 0.17}_{- 0.15} \ \pm 0.10$	^{19,20} ABREU	95Q DLPH	$e^+e^-\to~Z$	
$1.06 \ ^{+ 0.13}_{- 0.10} \ \pm 0.10$	²¹ ADAM	95 DLPH	$e^+e^-\to~Z$	
$0.99\ \pm0.14\ ^{+0.05}_{-0.04}$	^{19,22} AKERS	95T OPAL	$e^+e^-\to~Z$	

⁷ Data analyzed using $D/D^*\ell X$ event vertices.

⁸ Data analyzed using inclusive $D/D^* \ell X$.

 $^{^{9}}$ Measured mean life using partially reconstructed $D^{*-}\pi^{+}\mathrm{X}$ vertices.

¹⁰ ABREU 95Q assumes B($B^0 \to D^{**-} \ell^+ \nu_{\ell}$) = 3.2 ± 1.7%.

 $^{^{11}}$ Data analyzed using vertex-charge technique to tag B charge.

¹² AKERS 95T assumes B($B^0 \to D_S^{(*)} D^{(*)} = 5.0 \pm 0.9\%$ to find B^+/B^0 yield.

¹³ Combined result of $D/D^*\ell x$ analysis, fully reconstructed B analysis, and partially reconstruced $D^{*-}\pi^+X$ analysis.

¹⁴ Combined ABREU 95Q and ADAM 95 result.

 $^{^{15}}$ WAGNER 90 tagged B^0 mesons by their decays into $D^{*-}\,e^+\,
u$ and $D^{*-}\,\mu^+\,
u$ where the D^{*-} is tagged by its decay into $\pi^{-}\overline{D}^{0}$.

¹⁶ AVERILL 89 is an estimate of the B^0 mean lifetime assuming that $B^0 \rightarrow D^{*+} + X$ always.

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.01	$\pm 0.11\ \pm 0.02$		¹⁹ ABE	96c CDF	Repl. by ABE 98Q
1.03	$\pm 0.08\ \pm 0.02$		²³ BUSKULIC	96J ALEP	$e^+e^- ightarrow Z$
1.02	$\pm 0.16\ \pm 0.05$	269	¹⁸ ABE	94D CDF	Repl. by ABE 98B
1.11	$^{+0.51}_{-0.39}$ ± 0.11	188	¹⁹ ABREU	93D DLPH	Sup. by ABREU 95Q
1.01	$^{+0.29}_{-0.22}$ ± 0.12	253	²¹ ABREU	93G DLPH	Sup. by ADAM 95
1.0	$^{+0.33}_{-0.25}$ ± 0.08	130	ACTON	93C OPAL	Sup. by AKERS 95T
0.96	$+0.19 +0.18 \\ -0.15 -0.12$	154	¹⁹ BUSKULIC	93D ALEP	Sup. by BUSKULIC 96J

¹⁷ Data analyzed using charge of secondary vertex.

τ_{R^+}/τ_{R^0} (inferred from branching fractions)

These measurements are inferred from the branching fractions for semileptonic decay or other spectator-dominated decays by assuming that the rates for such decays are equal for B^0 and B^+ . We do not use measurements which assume equal production of B^0 and B^+ because of the large uncertainty in the production ratio.

DOCUMENT ID CL% EVTS

The data in this block is included in the average printed for a previous datablock.

$0.95^{+0.117}_{-0.080}\pm0.091$ ²⁴ ARTUSO 97 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$1.15 \pm 0.17 \pm 0.06$		²⁵ JESSOP	97 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.93\!\pm\!0.18\ \pm\!0.12$		²⁶ ATHANAS	94 CLE2	Sup. by AR-
				TUSO 97
$0.91 \pm 0.27 \ \pm 0.21$		²⁷ ALBRECHT		$e^+e^- ightarrow \gamma(4S)$
1.0 ± 0.4		29 ^{27,28} ALBRECHT	92G ARG	$e^+e^- ightarrow \gamma(4S)$
$0.89 \pm 0.19 \ \pm 0.13$		²⁷ FULTON	91 CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
$1.00\pm0.23\ \pm0.14$		²⁷ ALBRECHT	89L ARG	$e^+e^- \rightarrow \gamma(4S)$
0.49 to 2.3	90	²⁹ BEAN	87B CLEO	$e^+e^- \rightarrow \gamma(4S)$

 $^{^{24}}$ ARTUSO 97 uses partial reconstruction of $B \to D^* \ell \nu_\ell$ and independent of B^0 and B^+ production fraction.

 $^{^{18}}$ Measured using fully reconstructed decays.

¹⁹ Data analyzed using $D/D^*\ell X$ vertices.

²⁰ ABREU 95Q assumes B($B^0 \to D^{**-} \ell^+ \nu_{\ell}$) = 3.2 ± 1.7%.

 $^{^{21}\,\}mathrm{Data}$ analyzed using vertex-charge technique to tag B charge.

²² AKERS 95T assumes B($B^0 \to D_s^{(*)} D^{0(*)}$) = 5.0 ± 0.9% to find B^+/B^0 yield.

²³ Combined result of $D/D^*\ell X$ analysis and fully reconstructed B analysis.

 $^{^{25}}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 $^{^{26}}$ ATHANAS 94 uses events tagged by fully reconstructed B^- decays and partially or fully reconstructed B^0 decays.

²⁷ Assumes equal production of B^0 and B^+ .

²⁸ ALBRECHT 92G data analyzed using $B \to D_s \overline{D}$, $D_s \overline{D}^*$, $D_s^* \overline{D}$, $D_s^* \overline{D}^*$ events. ²⁹ BEAN 87B assume the fraction of $B^0 \overline{B}{}^0$ events at the $\Upsilon(4S)$ is 0.41.

B⁰ DECAY MODES

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁ Γ ₂	$\ell^+ u_\ell$ anything $D^-\ell^+ u_\ell$	[a] (10.5 ± 0.8) [a] (2.10 ± 0.19)	
Γ ₃	$D^*(2010)^-\ell^+ u_\ell$	[a] (4.60 ± 0.27)	%
Γ_4	$ ho^-\ell^+ u_\ell$	[a] $(2.6 \begin{array}{c} +0.6 \\ -0.7 \end{array})$	\times 10 ⁻⁴
Γ_5	$\pi^-\ell^+ u_\ell$	(1.8 ± 0.6)	× 10 ⁻⁴
	Inclusive	modes	
Γ_6	$\pi^-\mu^+ u_\mu$		
Γ ₇	\mathcal{K}^+ anything	(78 ± 8)	%
	<i>D</i> , <i>D</i> *, or	D_s modes	
	$D^-\pi^+$	(3.0 ±0.4)	× 10 ⁻³
Γ ₉	$D^-\rho^+$	(7.9 ± 1.4)	× 10 ⁻³
Γ_{10}	$\overline{D}{}^0\pi^+\pi^-$	< 1.6	
Γ_{11}	$D^*(2010)^-\pi^+$	(2.76 ± 0.21)	
. TZ	$D^{-}\pi^{+}\pi^{+}\pi^{-}$	(8.0 ± 2.5)	
Γ_{13}	$(D^-\pi^+\pi^+\pi^-)$ nonresonant	(3.9 ± 1.9)	
Γ_{14}	$D^-\pi^+ ho^0$	(1.1 ± 1.0)	
Γ_{15}	$D^- a_1(1260)^+$	(6.0 ± 3.3)	$\times 10^{-3}$
	$D^*(2010)^-\pi^+\pi^0$	(1.5 ± 0.5)	%
Γ_{17}	$D^*(2010)^- ho^+$	(6.8 ± 3.4)	$\times 10^{-3}$
Γ_{18}	$D^*(2010)^-\pi^+\pi^+\pi^-$	(7.6 ± 1.8)	$\times 10^{-3}$ S=1.4
Γ_{19}	$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	(0.0 ± 2.5)	× 10 ⁻³
Γ ₂₀	resonant $D^*(2010)^-\pi^+ ho^0$	(5.7 ±3.2)	× 10 ⁻³
Γ ₂₁	$D^*(2010)^- a_1(1260)^+$	(3.7 ± 0.27)	
	$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$	(3.5 ± 1.8)	
Γ ₂₃	$\overline{D}_{2}^{*}(2460)^{-}\pi^{+}$	< 2.2	

HTTP://PDG.LBL.GOV

Page 5

_	D *(0460) = +		3	
Γ ₂₄	$\overline{D}_{2}^{*}(2460)^{-}\rho^{+}$	< 4.9	\times 10 ⁻³	CL=90%
20	D^-D^+	< 1.2	\times 10 ⁻³	CL=90%
		(8.0 ± 3.0	$) \times 10^{-3}$	
Γ_{27}	$D^*(2010)^-D_s^+$	(9.6 ± 3.4	$) \times 10^{-3}$	
	$D^{-}D_{s}^{*+}$	($1.0~\pm0.5$) %	
	$D^*(2010)^-D_s^{*+}$	(2.0 ± 0.7)) %	
Γ ₃₀	$D_s^+\pi^-$	< 2.8	\times 10 ⁻⁴	CL=90%
Γ ₃₁	$D^{*+}\pi^{-}$	< 5	$\times10^{-4}$	CL=90%
Γ ₃₂	$D_{s}^{s}\rho^{-}$ $D_{s}^{*+}\rho^{-}$	< 7	$\times10^{-4}$	CL=90%
Γ ₃₃	$D_{-}^{*+}\rho^{-}$	< 8	$\times 10^{-4}$	CL=90%
	$D_s^+ a_1(1260)^-$	< 2.6	× 10 ⁻³	CL=90%
	$D_s^{*+} a_1(1260)^-$	< 2.2	× 10 ⁻³	CL=90%
Γ ₃₆	$D_s^- K^+$	< 2.4	× 10 ⁻⁴	CL=90%
	$D_s^{*-}K^+$	< 1.7	× 10 ⁻⁴	CL=90%
	$D_s^- K^*(892)^+$	< 9.9	× 10 × 10 ⁻⁴	CL=90%
	$D_s^{*-}K^*(892)^+$	< 1.1	× 10 × 10 ⁻³	CL=90%
			× 10 × 10 × 10 × 10 × 10 × 10 × 10 × 10	CL=90%
Γ ₄₀	$D_{s}^{-}\pi^{+}K^{0}$ $D_{s}^{*-}\pi^{+}K^{0}$	< 5	\times 10 $^{\circ}$ \times 10 $^{-3}$	
		< 3.1	× 10 3 × 10 ⁻³	CL=90%
Γ ₄₂	$D_s^- \pi^+ K^*(892)^0$	< 4		CL=90%
Γ ₄₃	$\frac{D_{s}^{*-}\pi^{+}K^{*}(892)^{0}}{D^{0}\pi^{0}}$	< 2.0	× 10 ⁻³	CL=90%
Γ ₄₄		< 1.2	$\times 10^{-4}$	CL=90%
Γ ₄₅	$\frac{\overline{D}^0}{\overline{D}^0} \rho^0$	< 3.9	$\times 10^{-4}$	CL=90%
Γ ₄₆	$\frac{\overline{D}^0}{\overline{D}^0} \eta$	< 1.3	\times 10 ⁻⁴	CL=90%
Γ ₄₇	$\frac{\overline{D}^0}{\overline{D}^0}\eta'$	< 9.4	$\times 10^{-4}$	CL=90%
	$\overline{D}^0 \omega$	< 5.1	\times 10 ⁻⁴	CL=90%
	$\overline{D}^*(2007)^0\pi^0$	< 4.4	$\times 10^{-4}$	CL=90%
	$\overline{D}^*(2007)^0_{0} \rho^0$	< 5.6	\times 10 ⁻⁴	CL=90%
Γ_{51}	$\overline{D}^*(2007)^0_{\ \ \eta}$	< 2.6	$\times 10^{-4}$	CL=90%
Γ_{52}	$\overline{D}^*(2007)^0 \eta'$	< 1.4	$\times 10^{-3}$	CL=90%
Γ ₅₃	$\overline{D}^*(2007)^0\omega$	< 7.4	$\times 10^{-4}$	CL=90%
	$D^*(2010)^+ D^*(2010)^-$	$(6.2 \begin{array}{c} +4.1 \\ -3.1 \end{array}$	$) \times 10^{-4}$	
Γ_{55}	$D^*(2010)^+D^-$	< 1.8	$\times 10^{-3}$	CL=90%
Γ ₅₆	$D^*(2010)^+ D^- \ D^{(*)0} \overline{D}^{(*)0}$	< 2.7	%	CL=90%
		rmonium modes		
Γ ₅₇	$J/\psi(1S)K^0$	(8.9 ±1.2	$) \times 10^{-4}$	
Γ ₅₀	$J/\psi(1S)K^+\pi^-$	(1.2 ±0.6		
Γ ₅₉	$J/\psi(1S)K^*(892)^0$	(1.50 ± 0.1)	$7) \times 10^{-3}$	
Γ ₆₀	$J/\psi(1S)\pi^0$	< 5.8	$\times 10^{-5}$	CL=90%
	$J/\psi(1S)\eta$	< 1.2	× 10 ⁻³	CL=90%
Γ ₆₂	$J/\psi(1S)\rho^0$	< 2.5	× 10 ⁻⁴	CL=90%
02				

Γ ₆₃	$J/\psi(1S)\omega$	< 2.	7×10^{-4}	CL=90%
Γ ₆₄	$\psi(2S)K^0$	< 8	\times 10 ⁻⁴	CL=90%
Γ ₆₅	ψ (2S) K $^+\pi^-$	< 1	\times 10 ⁻³	CL=90%
Γ ₆₆	$\psi(2S)K^*(892)^0$	(9.	$3 \pm 2.3 \times 10^{-4}$	
	$\chi_{c1}(1P) K^0$	< 2.	7×10^{-3}	CL=90%
Γ ₆₈	$\chi_{c1}(1P)K^*(892)^0$	< 2.	1×10^{-3}	CL=90%

K or K* modes

		71 01 71 1110405		
Γ ₆₉	$K^+\pi^-$	(1.5	$^{+0.5}_{-0.4}$) \times 10 ⁻⁵	
Γ ₇₀	$\mathcal{K}^0 \pi^0$	< 4.1	× 10 ⁻⁵	CL=90%
Γ ₇₁	$\eta' K^0$	(4.7	$^{+2.8}_{-2.2}$) × 10 ⁻⁵	
Γ ₇₂	$\eta' K^* (892)^0$	< 3.9	-2.2° × 10^{-5}	CL=90%
			\times 10 \times 10 ⁻⁵	CL=90%
Γ ₇₃	$\eta K^*(892)^0$			
Γ ₇₄	ηK^0 ωK^0	< 3.3	$\times 10^{-5}$	CL=90%
Γ ₇₅		< 5.7	$\times 10^{-5}$	CL=90%
Γ ₇₆	$\omega K^* (892)^0$	< 2.3	× 10 ⁻⁵	CL=90%
Γ ₇₇	K^+K^-	< 4.3	$\times 10^{-6}$	CL=90%
Γ ₇₈	$K^0\overline{K}^0$	< 1.7	× 10 ⁻⁵	CL=90%
Γ ₇₉	$K^+\rho^-$	< 3.5	$\times 10^{-5}$	CL=90%
Γ ₈₀	$K^0 \pi^+ \pi^-$		_	
Γ ₈₁	$\kappa^0_{\rho}\rho^0$	< 3.9	\times 10 ⁻⁵	CL=90%
Γ ₈₂	$K^0 f_0(980)$	< 3.6	\times 10 ⁻⁴	CL=90%
Γ ₈₃	$K^*(892)^+\pi^-$	< 7.2	$\times10^{-5}$	CL=90%
Γ ₈₄	$K^*(892)^0 \pi^0$	< 2.8	imes 10 ⁻⁵	CL=90%
Γ ₈₅	$K_2^*(1430)^+\pi^-$	< 2.6	$\times10^{-3}$	CL=90%
Γ ₈₆	$K^0 \bar{K^+} K^-$	< 1.3	$\times 10^{-3}$	CL=90%
Γ ₈₇	$\mathcal{K}^{0}\phi$	< 3.1	$\times 10^{-5}$	CL=90%
Γ ₈₈	$K^{-}\pi^{+}\pi^{+}\pi^{-}$	[b] < 2.3	$\times 10^{-4}$	CL=90%
Γ ₈₉	$K^*(892)^0\pi^+\pi^-$	< 1.4	$\times 10^{-3}$	CL=90%
Γ ₉₀	$\hat{K}^*(892)^0 \rho^0$	< 4.6	$\times 10^{-4}$	CL=90%
Γ ₉₁	$K^*(892)^0 f_0(980)$	< 1.7	$\times 10^{-4}$	CL=90%
Γ ₉₂	$K_1(1400)^+\pi^-$	< 1.1	$\times 10^{-3}$	CL=90%
Γ ₉₃	K^{-} $a_{1}(1260)^{+}$	[b] < 2.3	$\times 10^{-4}$	CL=90%
Γ ₉₄	$K^*(892)^0 K^+ K^-$	< 6.1	$\times 10^{-4}$	CL=90%
Γ ₉₅	$K^*(892)^0 \phi$	< 2.1	$\times 10^{-5}$	CL=90%
Γ ₉₆	$K_1(1400)^0 \rho^0$	< 3.0	$\times 10^{-3}$	CL=90%
Γ ₉₇	$K_1(1400)^0 \phi$	< 5.0	× 10 ⁻³	CL=90%
Γ ₉₈	$K_2^*(1430)^0 \rho^0$	< 1.1	× 10 ⁻³	CL=90%
Γ ₉₉	$K_2^*(1430)^0 \phi$	< 1.4	× 10 ⁻³	CL=90%
	$\kappa^*(002)0$			CL—90/0
Γ ₁₀₀	$K^*(892)^0 \gamma$	(4.0	$\pm 1.9 \) \times 10^{-5}$	

_	v (1070)0			3	.
101	$K_1(1270)^0 \gamma$		7.0	\times 10 ⁻³	CL=90%
102	$K_1(1400)^0 \gamma$	<		\times 10 ⁻³	CL=90%
I 103	$K_2^*(1430)^0 \gamma$	<		$\times 10^{-4}$	CL=90%
I ₁₀₄	$K^{*}(1680)^{0}\gamma$	<		\times 10 ⁻³	CL=90%
Γ ₁₀₅	$K_3^*(1780)^0 \gamma$	<	1.0	%	CL=90%
Γ_{106}	$K_4^*(2045)^0 \gamma$	<	4.3	$\times 10^{-3}$	CL=90%
	Li	ght unflavored meson	modes		
Γ ₁₀₇	$\pi^{+}\pi^{-}$	<		$\times10^{-5}$	CL=90%
Γ ₁₀₈	$\pi^0\pi^0$	<		× 10 ⁻⁶	CL=90%
Γ ₁₀₉	^	<		× 10 ⁻⁶	CL=90%
Γ ₁₁₀	$\eta \eta$	<	1.8	× 10 × 10 ⁻⁵	CL=90%
Γ ₁₁₁	$\eta' \pi^0$	<	1.1	× 10 × 10 ⁻⁵	CL=90%
Γ ₁₁₂	$\eta' \eta'$	<		× 10 × 10 ⁻⁵	CL=90%
Γ ₁₁₃		<		× 10 × 10 ⁻⁵	CL=90%
	$\eta' \rho^0$	<		× 10 × 10 ⁻⁵	CL=90%
Γ ₁₁₄	$\frac{\eta}{\eta} \rho^0$	<	1.3	× 10 × 10 × 10 × 10 × 10 × 10 × 10 × 10	CL=90%
Г ₁₁₅		<	1.2	× 10 × 10 × 10 × 10 × 10 × 10 × 10 × 10	CL=90%
Г ₁₁₆	$\omega \eta \ \omega \eta'$	<		× 10 ⁻⁵	CL=90%
Г ₁₁₇	· _			\times 10 \times 10 \times 10 \times	
Γ ₁₁₈		<	1.1	\times 10 $^{\circ}$ \times 10 $^{-5}$	CL=90%
Γ ₁₁₉	$\omega \omega$ $_{\perp}$ _0	<	1.9		CL=90%
Γ ₁₂₀	$\phi \pi^0$	<	5	$\times 10^{-6}$	CL=90%
Γ ₁₂₁	$\phi \eta$	<		$\times 10^{-6}$	CL=90%
Γ ₁₂₂	$\phi \eta'$	<		$\times 10^{-5}$	CL=90%
Γ ₁₂₃		<	1.3	$\times 10^{-5}$	CL=90%
Γ ₁₂₄		<	2.1	$\times 10^{-5}$	CL=90%
Γ ₁₂₅	$\phi \phi + 0$	<	1.2	$\times 10^{-5}$	CL=90%
Γ ₁₂₆	$\pi^{+}\pi^{-}\pi^{0}$	<	7.2	$\times 10^{-4}$	CL=90%
Γ ₁₂₇	$\rho^0\pi^0$	<	2.4	$\times 10^{-5}$	CL=90%
Γ ₁₂₈	$ ho^{\mp}\pi^{\pm} \\ \pi^{+}\pi^{-}\pi^{+}\pi^{-}$	[c] <		$\times 10^{-5}$	CL=90%
			2.3	$\times 10^{-4}$	CL=90%
l 130	$\rho^{0} \rho^{0}$		2.8	$\times 10^{-4}$	CL=90%
l 131	$a_1(1260)^{\mp} \pi^{\pm}$	[c] <		× 10 ⁻⁴	CL=90%
I 132	$a_2(1320)^{\mp} \pi^{\pm}$	[c]		\times 10 ⁻⁴	CL=90%
I 133	$\pi^{+} \frac{\pi^{-}}{\pi^{-}} \pi^{0} \pi^{0}$		3.1	\times 10 ⁻³	CL=90%
I 134	$\rho^{+}\rho^{-}$		2.2	\times 10 ⁻³	CL=90%
l 135	$a_1(1260)^0 \pi^0$		1.1	\times 10 ⁻³	CL=90%
Γ ₁₃₆	$\omega \pi^0$		1.4	$\times 10^{-5}$	CL=90%
I ₁₃₇	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$		9.0	\times 10 ⁻³	CL=90%
I ₁₃₈	$a_1(1260)^+ \rho^-$		3.4	$\times 10^{-3}$	CL=90%
I ₁₃₉	$a_1(1260)^0 \rho^0$		2.4	$\times 10^{-3}$	CL=90%
I ₁₄₀	$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$	<	3.0	$\times 10^{-3}$	CL=90%
l ₁₄₁	$a_1(1260)^+ a_1(1260)^+$	60)_ <	2.8	\times 10 ⁻³	CL=90%
I ₁₄₂	$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$	$-\pi^{\circ}$ <	1.1	%	CL=90%

Baryon modes

Γ_{143}	$p\overline{p}$	<	7.0	\times 10 ⁻⁶	CL=90%
Γ_{144}	$ ho \overline{ ho} \pi^+ \pi^-$	<	2.5	\times 10 ⁻⁴	CL=90%
Γ_{145}	$p\overline{\Lambda}\pi^-$	<	1.3	\times 10 ⁻⁵	CL=90%
Γ_{146}	$\overline{\Lambda}\Lambda$	<	3.9	\times 10 ⁻⁶	CL=90%
Γ_{147}	$\Delta^0 \overline{\Delta}{}^0$	<	1.5	$\times 10^{-3}$	CL=90%
	$\Delta^{++}\Delta^{}$	<	1.1	$\times 10^{-4}$	CL=90%
Γ ₁₄₉	$\overline{\Sigma}_c^{}\Delta^{++}$	<	1.0	$\times 10^{-3}$	CL=90%
Γ_{150}	$\overline{\Lambda}_c^- p \pi^+ \pi^-$	(1.3 ± 0.6)	$) \times 10^{-3}$	
Γ ₁₅₁	$\overline{\Lambda}_c^- p$	<	2.1	$\times 10^{-4}$	CL=90%
Γ ₁₅₂	$\overline{\Lambda}_c^- \rho \pi^0$	<	5.9	$\times 10^{-4}$	CL=90%
	$\overline{\Lambda}_c^- \rho \pi^+ \pi^- \pi^0$	<	5.07	$\times 10^{-3}$	CL=90%
Γ_{154}	$\overline{\Lambda}_c^- p \pi^+ \pi^- \pi^+ \pi^-$	<	2.74	$\times 10^{-3}$	CL=90%

Lepton Family number (LF) violating modes, or $\Delta B = 1$ weak neutral current (B1) modes

				• •		
Γ_{155}	$\gamma\gamma$		<	3.9	\times 10 ⁻⁵	CL=90%
Γ_{156}	e^+e^-	B1	<	5.9	\times 10 ⁻⁶	CL=90%
Γ_{157}	$\mu^+\mu^-$	B1	<	6.8	\times 10 ⁻⁷	CL=90%
Γ_{158}	$K^0 e^+ e^-$	B1	<	3.0	\times 10 ⁻⁴	CL=90%
	$\mathcal{K}^0\mu^+\mu^-$	B1	<	3.6	\times 10 ⁻⁴	CL=90%
Γ_{160}	$K^*(892)^0 e^+ e^-$	B1	<	2.9	\times 10 ⁻⁴	CL=90%
	$K^*(892)^0 \mu^+ \mu^-$	B1	<	4.0	\times 10 ⁻⁶	CL=90%
Γ_{162}	$K^*(892)^0 \nu \overline{\nu}$	B1	<	1.0	$\times 10^{-3}$	CL=90%
Γ_{163}	$e^{\pm}\mu^{\mp}$	LF	[c] <	3.5	\times 10 ⁻⁶	CL=90%
Γ_{164}	$e^{\pm} au^{\mp}$	LF	[c] <	5.3	\times 10 ⁻⁴	CL=90%
Γ_{165}	$\mu^{\pm} au^{\mp}$	LF	[c]	8.3	$\times 10^{-4}$	CL=90%

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- $[b]\ B^0$ and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.

B⁰ BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^\pm section.

$\Gamma(\ell^+\nu_\ell \, {\rm anything})/\Gamma_{\rm total}$ VALUE 0.105 ±0.008 OUR AVERAGE 0.1078±0.0060±0.0069 0.093 ±0.011 ±0.015 0.099 ±0.030 ±0.009 DOCUMENT ID TECN COMMENT TECN

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.109 \ \pm 0.007 \ \pm 0.011$

ATHANAS

94 CLE2 Sup. by ARTUSO 97

³⁰ ARTUSO 97 uses partial reconstruction of $B\to D^*\ell\nu_\ell$ and inclusive semileptonic branching ratio from BARISH 96B (0.1049 \pm 0.0017 \pm 0.0043).

$\Gamma(D^-\ell^+\nu_\ell)/\Gamma_{\text{total}}$

 Γ_2/Γ

 ℓ denotes e or μ , not the sum.

VALUE	DOCUMENT ID	TECN	COMMENT			
0.0210±0.0019 OUR NEW AVER	RAGE $[0.0200 \pm 0.0200]$	0.0025 OUR	1998 AVERAGE]			
$0.0209\!\pm\!0.0013\!\pm\!0.0018$			$e^+e^- ightarrow ~ \varUpsilon(4S)$			
$0.0235 \pm 0.0020 \pm 0.0044$	³² BUSKULIC					
$0.018 \pm 0.006 \pm 0.003$			$e^+e^- ightarrow$ $\Upsilon(4S)$			
$0.020\ \pm0.007\ \pm0.006$	³⁴ ALBRECHT	89J ARG	$e^+e^- \rightarrow \Upsilon(4S)$			
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
$0.0187\!\pm\!0.0015\!\pm\!0.0032$	³⁵ ATHANAS	97 CLE2	Repl. by BARTELT 99			

³¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³⁵ ATHANAS 97 uses missing energy and missing momentum to reconstruct neutrino.

$\Gamma(D^*(2010)^-\ell^+ u_\ell)/\Gamma_{ m tc}$	otal			Г ₃ /Г
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.0460 ± 0.0027 OUR AVER	AGE			
$0.0508 \pm 0.0021 \pm 0.0066$			97G OPAL	$e^+e^- ightarrow Z$
$0.0553 \!\pm\! 0.0026 \!\pm\! 0.0052$			97 ALEP	$e^+e^- ightarrow Z$
$0.0552 \!\pm\! 0.0017 \!\pm\! 0.0068$		³⁸ ABREU	96P DLPH	$e^+e^- ightarrow Z$
$0.0449\!\pm\!0.0032\!\pm\!0.0039$	376		95 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.045\ \pm0.003\ \pm0.004$			94 ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.047\ \pm0.005\ \pm0.005$	235		93 ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.040\ \pm0.004\ \pm0.006$		⁴² BORTOLETTO8	B9B CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the fol	lowing o	lata for averages, fits,	limits, etc.	. • • •
$0.0518 \pm 0.0030 \pm 0.0062$	410	43 BUSKULIC	95N ALEP	Sup. by
		44 -		BUSKULIC 97
seen	398		93 CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
$0.070 \pm 0.018 \pm 0.014$		⁴⁵ ANTREASYAN 9	90в CBAL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
		46 ALBRECHT 8	89c ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.060\ \pm0.010\ \pm0.014$		⁴⁷ ALBRECHT 8	89」ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.070\ \pm0.012\ \pm0.019$	47	48 ALBRECHT 8	87J ARG	$e^+e^- \rightarrow \Upsilon(4S)$
³⁶ ACKERSTAFF 97G assur	nes frac	tion (B^+) = fraction ($(B^0) = (37.$	$.8\pm2.2)\%$ and PDG 96

³⁶ ACKERSTAFF 97G assumes fraction (B^+) = fraction (B^0) = $(37.8 \pm 2.2)\%$ and PDG 96 values for B lifetime and branching ratio of D^* and D decays.

³² BUSKULIC 97 assumes fraction (B^+) = fraction (B^0) = (37.8 \pm 2.2)% and PDG 96 values for B lifetime and branching ratio of D^* and D decays.

³³ FULTON 91 assumes assuming equal production of B^0 and B^+ at the $\Upsilon(4S)$ and uses Mark III D and D^* branching ratios.

³⁴ ALBRECHT 89J reports $0.018 \pm 0.006 \pm 0.005$. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \rightarrow K^-\pi^+$).

³⁷ BUSKULIC 97 assumes fraction (B^+) = fraction (B^0) = $(37.8 \pm 2.2)\%$ and PDG 96 values for B lifetime and D^* and D branching fractions.

 $^{^{38}}$ ABREU 96P result is the average of two methods using exclusive and partial D^* reconstruction.

³⁹ BARISH 95 use B($D^0 \rightarrow K^- \pi^+$) = (3.91 \pm 0.08 \pm 0.17)% and B($D^{*+} \rightarrow D^0 \pi^+$) = (68.1 \pm 1.0 \pm 1.3)%.

- 40 ALBRECHT 94 assumes B($D^{*+}
 ightarrow D^0 \pi^+$) = 68.1 \pm 1.0 \pm 1.3%. Uses partial reconstruction of D^{*+} and is independent of D^{0} branching ratios.
- 41 ALBRECHT 93 reports 0.052 \pm 0.005 \pm 0.006. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \rightarrow K^-\pi^+$). We have taken their average e and μ value. They also obtain $\alpha = 2*\Gamma^0/(\Gamma^- + \Gamma^+) - 1 = 1.1 \pm 0.4 \pm 0.2$, $A_{AF} = 3/4*(\Gamma^{-} - \Gamma^{+})/\Gamma = 0.2 \pm 0.08 \pm 0.06$ and a value of $|V_{cb}| = 0.036$ –0.045 depending on model assumptions.
- $^{
 m 42}$ We have taken average of the the BORTOLETTO 89B values for electrons and muons, 0.046 \pm 0.005 \pm 0.007. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \rightarrow K^-\pi^+$). The measurement suggests a D^* polarization parameter value $\alpha=0.65\pm0.66\pm0.25$.
- ⁴³ BUSKULIC 95N assumes fraction (B^+) = fraction (B^0) = 38.2 \pm 1.3 \pm 2.2% and au_{B^0} $=1.58\pm0.06$ ps. $\Gamma(D^{*-}\ell^+\nu_\ell)/{
 m total}=[5.18-0.13({
 m fraction}(B^0)-38.2)-1.5(au_{B^0}-1.5)$
- ⁴⁴ Combining $\overline{D}^{*0}\ell^+\nu_\ell$ and $\overline{D}^{*-}\ell^+\nu_\ell$ SANGHERA 93 test V-A structure and fit the decay angular distributions to obtain $A_{FB}=3/4*(\Gamma^--\Gamma^+)/\Gamma=0.14\pm0.06\pm0.03$. Assuming a value of V_{cb} , they measure V, A_1 , and A_2 , the three form factors for the $D^*\ell\nu_\ell$ decay, where results are slightly dependent on model assumptions.
- 45 ANTREASYAN 90B is average over B and \overline{D}^* (2010) charge states.
- 46 The measurement of ALBRECHT 89C suggests a D^* polarization γ_L/γ_T of 0.85 \pm 0.45. or $\alpha = 0.7 \pm 0.9$.
- ⁴⁷ ALBRECHT 89J is ALBRECHT 87J value rescaled using B($D^*(2010)^- \rightarrow D^0 \pi^-$) = $0.57\pm0.04\pm0.04$. Superseded by ALBRECHT 93.
- ⁴⁸ ALBRECHT 87J assume μ -e universality, the B($\Upsilon(4S) \to B^0 \overline{B}{}^0) = 0.45$, the B($D^0 \to B^0 \overline{B}{}^0$ $K^-\pi^+$) = (0.042 ± 0.004 ± 0.004), and the B(D^* (2010) $^- \rightarrow D^0\pi^-$) = 0.49 ± 0.08. Superseded by ALBRECHT 89J.

$\Gamma(\rho^-\ell^+\nu_\ell)/\Gamma_{\text{total}}$

 Γ_{4}/Γ

 $\ell = e$ or μ , not sum over e and μ modes.

VALUE (units 10^{-4}) CL%DOCUMENT ID TECN COMMENT

2.6 $^{+0.6}_{-0.7}$ **OUR NEW AVERAGE** $[(2.5^{+0.8}_{-1.0}) \times 10^{-4} \text{ OUR } 1998 \text{ AVERAGE}]$

$$2.57 \pm 0.29 ^{+0.53}_{-0.62}$$

⁴⁹ BEHRENS

00 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

Created: 6/20/2000 14:10

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$2.5~\pm0.4~^{+0.7}_{-0.9}$$
 50 ALEXANDER 96T CLE2 Repl. by BEHRENS 00 <4.1 90 51 BEAN 93B CLE2 $e^+e^-
ightarrow \varUpsilon(4S)$

- 49 BEHRENS 00 reports systematic errors $^{+0.33}_{-0.46}\pm$ 0.41, where the second error is theo-
- retical model dependence. We combine these in quadrature. $\begin{array}{c} -0.40 \\ \text{retical model dependence.} \end{array}$ ALEXANDER 96T gives systematic errors $\begin{array}{c} +0.5 \\ -0.7 \end{array} \pm 0.5$ where the second error reflects the estimated model dependence. We combine these in quadrature. Assumes isospin symmetry: $\Gamma(B^0 \to \rho^- \ell^+ \nu_\ell) = 2 \times \Gamma(B^+ \to \rho^0 \ell^+ \nu_\ell) \sim 2 \times \Gamma(B^+ \to \omega \ell^+ \nu_\ell)$.
- $^{51}\,\mathrm{BEAN}$ 93B limit set using ISGW Model. Using isospin and the quark model to combine $\Gamma(\rho^0\ell^+\nu_\ell)$ and $\Gamma(\omega\ell^+\nu_\ell)$ with this result, they obtain a limit <(1.6–2.7) \times 10^{-4} at 90% CL for $B^+ \to (\omega \text{ or } \rho^0) \ell^+ \nu_{\ell}$. The range corresponds to the ISGW, WSB, and KS models. An upper limit on $|V_{ub}/V_{cb}| < 0.08$ –0.13 at 90% CL is derived as well.

 $\Gamma(\pi^-\ell^+\nu_\ell)/\Gamma_{\rm total}$ Γ_5/Γ VALUE (units 10^{-4} 52 ALEXANDER 96T CLE2 $1.8\pm0.4\pm0.4$ 52 ALEXANDER 96T gives systematic errors $\pm 0.3 \pm 0.2$ where the second error reflects the estimated model dependence. We combine these in quadrature. Assumes isospin symmetry: $\Gamma(B^0 \to \pi^- \ell^+ \nu_{\ell}) = 2 \times \Gamma(B^+ \to \pi^0 \ell^+ \nu_{\ell}).$ $\Gamma(\pi^-\mu^+\nu_\mu)/\Gamma_{\rm total}$ Γ_6/Γ

DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • •

⁵³ ALBRECHT seen

$\Gamma(K^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_7/Γ

TECN COMMENT 0.78±0.08 OUR NEW AVERAGE $[0.8 \pm 0.8 \text{ OUR } 1998 \text{ AVERAGE}]$

 0.78 ± 0.08

⁵⁴ ALBRECHT 96D ARG

 $\Gamma(D^-\pi^+)/\Gamma_{\text{total}}$

 Γ_8/Γ TECN COMMENT **EVTS** 0.0030 ± 0.0004 OUR AVERAGE ⁵⁵ ALAM $0.0029 \pm 0.0004 \pm 0.0002$ 56 BORTOLETTO92 CLEO $e^+e^ightarrow~ \varUpsilon$ (4S) $0.0027 \pm 0.0006 \pm 0.0005$ ⁵⁷ ALBRECHT 90J ARG $0.0048 \pm 0.0011 \pm 0.0011$ 0.0051 + 0.0028 + 0.0013⁵⁸ BFBFK 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ -0.0025 - 0.0012

• • We do not use the following data for averages, fits, limits, etc. • •

⁵⁷ ALBRECHT 88K ARG $e^+e^- \rightarrow \Upsilon(4S)$ $0.0031 \pm 0.0013 \pm 0.0010$

 $^{^{53}}$ In ALBRECHT 91C, one event is fully reconstructed providing evidence for the b
ightarrow u

⁵⁴ Average multiplicity.

⁵⁵ ALAM 94 reports $[B(B^0 \to D^-\pi^+) \times B(D^+ \to K^-\pi^+\pi^+)] = 0.000265 \pm 0.000265$ 0.000032 ± 0.000023 . We divide by our best value B($D^+ \rightarrow K^- \pi^+ \pi^+$) = $(9.0 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{56}}$ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

 $^{^{57}}$ ALBRECHT 88K assumes $B^0 \overline{B}{}^0: B^+ B^-$ production ratio is 45:55. Superseded by AL-BRECHT 90J which assumes 50:50.

 $^{^{58}\,\}mathrm{BEBEK}$ 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92.

 $\Gamma(D^-\rho^+)/\Gamma_{\text{total}}$ Γ9/Γ __ <u>TECN</u> <u>COMMENT</u> **EVTS** 0.0079 ± 0.0014 OUR AVERAGE ⁵⁹ ALAM 94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.0078 \pm 0.0013 \pm 0.0005$ ⁶⁰ ALBRECHT 90J ARG 9 $0.009 \pm 0.005 \pm 0.003$ • • We do not use the following data for averages, fits, limits, etc. • ⁶⁰ ALBRECHT 88k ARG ⁵⁹ ALAM 94 reports $[B(B^0 \to D^- \rho^+) \times B(D^+ \to K^- \pi^+ \pi^+)] = 0.000704 \pm 0.000704$ 0.000096 ± 0.000070 . We divide by our best value B($D^+ \rightarrow K^- \pi^+ \pi^+$) =

⁵⁹ ALAM 94 reports $[B(B^0 \to D^- \rho^+) \times B(D^+ \to K^- \pi^+ \pi^+)] = 0.000704 \pm 0.000096 \pm 0.000070$. We divide by our best value $B(D^+ \to K^- \pi^+ \pi^+) = (9.0 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 60 ALBRECHT 88K assumes $B^0\overline{B}^0$: B^+B^- production ratio is 45:55. Superseded by ALBRECHT 90J which assumes 50:50.

$\Gamma(\overline{D}{}^0\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{10}/Γ

•	,,								
VALUE		L%	EVTS	_	DOCUMENT ID		TECN	COMMENT	
<0.0016	9	0		61	ALAM	94	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 0.007	90		⁶² BORTOLETT	O92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 0.034	90		⁶³ BEBEK	87	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
0.07 ± 0	.05	5	⁶⁴ BEHRENDS	83	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$

⁶¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

62 BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D. The product branching fraction into $D_0^*(2340)\pi$ followed by $D_0^*(2340) \to D^0\pi$ is < 0.0001 at 90% CL and into $D_2^*(2460)$ followed by $D_2^*(2460) \to D^0\pi$ is < 0.0004 at 90% CL.

63 BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%. B($D^0\to K^-\pi^+$) = (4.2 \pm 0.4 \pm 0.4)% and B($D^0\to K^-\pi^+\pi^+\pi^-$) = (9.1 \pm 0.8 \pm 0.8)% were used.

64 Corrected by us using assumptions: $B(D^0 \rightarrow K^-\pi^+) = (0.042 \pm 0.006)$ and $B(\Upsilon(4S) \rightarrow B^0\overline{B}^0) = 50\%$. The product branching ratio is $B(B^0 \rightarrow \overline{D}^0\pi^+\pi^-)B(\overline{D}^0 \rightarrow K^+\pi^-) = (0.39 \pm 0.26) \times 10^{-2}$.

$\Gamma(D^*(2010)^-\pi^+)/\Gamma_{\text{total}}$

 Γ_{11}/Γ

VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.00276±0.00021 OUR AVE	RAGE			
$0.00281 \pm 0.00024 \pm 0.00005$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.0026 \pm 0.0003 \pm 0.0004$	82			$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.00337 \pm 0.00096 \pm 0.00002$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.00236 \pm 0.00088 \pm 0.00002$	12			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.00236 ^{+ 0.00150}_{- 0.00110} \pm 0.00002$	5	⁶⁹ BEBEK	87 CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.010 \pm 0.004 \pm 0.001 8 70 AKERS 94J OPAL $e^+e^- \rightarrow Z$ 0.0027 \pm 0.0014 \pm 0.0010 5 71 ALBRECHT 87C ARG $e^+e^- \rightarrow \Upsilon(4S)$ 0.0035 \pm 0.002 \pm 0.002 72 ALBRECHT 86F ARG $e^+e^- \rightarrow \Upsilon(4S)$ 0.017 \pm 0.005 \pm 0.005 41 73 GILES 84 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

- ⁶⁵ BRANDENBURG 98 assume equal production of B^+ and B^0 at $\Upsilon(4S)$ and use the D^* reconstruction technique. The first error is their experiment's error and the second error is the systematic error from the PDG 96 value of $B(D^* \to D\pi)$.
- ⁶⁶ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \rightarrow D^0\pi^+)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$.
- ⁶⁷ BORTOLETTO 92 reports $0.0040 \pm 0.0010 \pm 0.0007$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁶⁸ ALBRECHT 90J reports $0.0028 \pm 0.0009 \pm 0.0006$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- 69 BEBEK 87 reports $0.0028^{+}_{-}0.0015^{+}_{-}0.0010$ for $B(D^{*}(2010)^{+}_{-}\rightarrow D^{0}\pi^{+}_{-})=0.57\pm0.006$. We rescale to our best value $B(D^{*}(2010)^{+}_{-}\rightarrow D^{0}\pi^{+}_{-})=(67.7\pm0.5)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92 and ALBRECHT 90.
- 70 noted for BORTOLETTO 92 and ALBRECHT 90J. Assumes B($Z \rightarrow b \, \overline{b}$) = 0.217 and 38% B_d production fraction.
- ⁷¹ ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \to B^+B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0\overline{B}{}^0) = 45\%$. Superseded by ALBRECHT 90J.

 ⁷² ALBRECHT 86F uses pseudomass that is independent of D^0 and D^+ branching ratios.
- ⁷² ALBRECHT 86F uses pseudomass that is independent of D^0 and D^+ branching ratios. ⁷³ Assumes B($D^*(2010)^+ \rightarrow D^0 \pi^+$) = 0.60 $^{+0.08}_{-0.15}$. Assumes B($\Upsilon(4S) \rightarrow B^0 \overline{B}^0$) = 0.40 \pm 0.02 Does not depend on D branching ratios.

$$\Gamma(D^-\pi^+\pi^+\pi^-)/\Gamma_{ ext{total}}$$

VALUE

0.0080±0.0021±0.0014

 $T_{ ext{total}}$

DOCUMENT ID

TECN

COMMENT

74 BORTOLETTO92 CLEO $e^+e^- oup au(4S)$

⁷⁴BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$$\Gamma((D^-\pi^+\pi^+\pi^-) \text{ nonresonant})/\Gamma_{\text{total}}$$
 $\Gamma_{13}/\Gamma_{\text{VALUE}}$ $\Gamma_{13}/\Gamma_{\text{DOCUMENT ID}}$ $\Gamma_{13}/\Gamma_{\text{D$

⁷⁵BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$$\Gamma(D^-\pi^+\rho^0)/\Gamma_{\text{total}}$$
 $VALUE$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$
 $O.0011\pm0.0009\pm0.0004$

⁷⁶ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

 $\Gamma(D^*(2010)^-\pi^+\pi^0)/\Gamma_{\text{total}}$

 Γ_{16}/Γ

VALUE $\frac{EVTS}{78}$ ALBRECHT 90J ARG $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.015 \pm 0.008 \pm 0.008$

8 ⁷⁹ ALBRECHT

87C ARG $e^+e^- \rightarrow \Upsilon(4S)$

⁷⁸ ALBRECHT 90J reports $0.018 \pm 0.004 \pm 0.005$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

⁷⁹ ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \to B^+B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0\overline{B}{}^0) = 45\%$. Superseded by ALBRECHT 90J.

$\Gamma(D^*(2010)^-\rho^+)/\Gamma_{\text{total}}$

 Γ_{17}/Γ

0.0160 \pm 0.0113 \pm 0.0001 0.00589 \pm 0.00352 \pm 0.00004 19 80 BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 81 ALBRECHT 90J ARG $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.0074 \pm 0.0010 \pm 0.0014$ 76 82,83 ALAM

94 CLE2 Sup. by JESSOP 97

Created: 6/20/2000 14:10

 $0.081 \pm 0.029 \begin{array}{c} +0.059 \\ -0.024 \end{array}$ 19 84

S5 CLEO $e^+e^-
ightarrow \gamma(4S)$

- ⁸⁰ BORTOLETTO 92 reports $0.019 \pm 0.008 \pm 0.011$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁸¹ ALBRECHT 90J reports $0.007 \pm 0.003 \pm 0.003$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁸² ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \rightarrow D^0\pi^+)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and $B(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)/B(D^0 \rightarrow K^-\pi^+)$.
- ⁸³ This decay is nearly completely longitudinally polarized, $\Gamma_L/\Gamma=(93\pm5\pm5)\%$, as expected from the factorization hypothesis (ROSNER 90). The nonresonant $\pi^+\pi^0$ contribution under the ρ^+ is less than 9% at 90% CL.
- ⁸⁴ Uses B($D^* \rightarrow D^0 \pi^+$) = 0.6 \pm 0.15 and B($\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$) = 0.4. Does not depend on D branching ratios.

⁷⁷ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

 $\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$

0.0076 ± 0.0018 OUR NEW AVERAGE

Error includes scale factor of 1.4. See the ideogram below. [0.0076 \pm 0.0017 OUR 1998

AVERAGE Scale factor = 1.3

 $0.0063 \pm 0.0010 \pm 0.0011$

TECN COMMENT

 $0.0134 \pm 0.0036 \pm 0.0001$

$$0.0101 \pm 0.0041 \pm 0.0001$$

90J ARG
$$e^+e^-$$

• • We do not use the following data for averages, fits, limits, etc. •

$$0.033 \pm 0.009 \pm 0.016$$

87C ARG
$$e^+e^- \rightarrow \Upsilon(4S)$$

87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

Created: 6/20/2000 14:10

 85 ALAM 94 assume equal production of B^+ and B^0 at the \varUpsilon (4S) and use the CLEO II $B(D^*(2010)^+ \rightarrow D^0\pi^+)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+)$

 $K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+)$ and $B(D^0\to K^-\pi^+\pi^+\pi^-)/B(D^0\to K^-\pi^+)$. 86 The three pion mass is required to be between 1.0 and 1.6 GeV consistent with an a_1 meson. (If this channel is dominated by a_1^+ , the branching ratio for $\overline{D}^{*-}a_1^+$ is twice that for $\overline{D}^{*-}\pi^{+}\pi^{+}\pi^{-}$.)

- ⁸⁷BORTOLETTO 92 reports $0.0159 \pm 0.0028 \pm 0.0037$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) =$ 0.57 ± 0.06 . We rescale to our best value B($D^*(2010)^+ \rightarrow D^0 \pi^+$) = (67.7 \pm 0.5) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- ⁸⁸ ALBRECHT 90J reports $0.012 \pm 0.003 \pm 0.004$ for B($D^*(2010)^+ \rightarrow D^0 \pi^+$) = 0.57 \pm 0.06. We rescale to our best value B($D^*(2010)^+ \rightarrow D^0\pi^+$) = $(67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- 89 ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \rightarrow B^+B^-) = 55\%$ and $B(\Upsilon(4S) \rightarrow B^0\overline{B}^0) = 45\%$. Superseded by AL-BRECHT 90J.
- $^{90}\,\mathrm{BEBEK}$ 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92.

$$\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$$

 $\Gamma((D^*(2010)^-\pi^+\pi^+\pi^-) \text{ nonresonant})/\Gamma_{\text{total}}$

 Γ_{19}/Γ

VALUE 0.0000±0.0019±0.0016 91 BORTOLETTO92 CLEO $e^+e^-
ightarrow \Upsilon(4S)$

TECN COMMENT

Created: 6/20/2000 14:10

 $\Gamma(D^*(2010)^-\pi^+\rho^0)/\Gamma_{\text{total}}$

 Γ_{20}/Γ

 $\frac{VALUE}{0.0057 \pm 0.0032}$ OUR NEW AVERAGE [0.0057 ± 0.0031 OUR 1998 AVERAGE] 0.00573±0.00317±0.00004 92 BORTOLETTO92 CLEO e^+e^- → $\Upsilon(4S)$

⁹² BORTOLETTO 92 reports $0.0068 \pm 0.0032 \pm 0.0021$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$\Gamma(D^*(2010)^- a_1(1260)^+)/\Gamma_{\text{total}}$

 Γ_{21}/Γ

 0.0130 ± 0.0027 OOR AVERAGE $0.0126\pm0.0020\pm0.0022$ 93,94 ALAM 94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.0152\pm0.0070\pm0.0001$ 95 BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

⁹¹ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.

⁹³ ALAM 94 value is twice their $\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$ value based on their observation that the three pions are dominantly in the $a_1(1260)$ mass range 1.0 to 1.6 GeV.

⁹⁴ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.

⁹⁵ BORTOLETTO 92 reports $0.018 \pm 0.006 \pm 0.006$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{22}/Γ

 VALUE
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 0.035 ± 0.018 OUR NEW AVERAGE
 [0.034 \pm 0.018 OUR 1998 AVERAGE]

 0.0345 $\pm 0.0181 \pm 0.0003$ 28
 96 ALBRECHT
 90J ARG
 $e^+e^- \rightarrow \Upsilon(4S)$

⁹⁶ ALBRECHT 90J reports $0.041 \pm 0.015 \pm 0.016$ for $B(D^*(2010)^+ \rightarrow D^0\pi^+) = 0.57 \pm 0.06$. We rescale to our best value $B(D^*(2010)^+ \rightarrow D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

$\Gamma(\overline{D}_2^*(2460)^-\pi^+)/\Gamma_{\text{total}}$

 Γ_{23}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<0.0022	90	97 ALAM	94	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$

 97 ALAM 94 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0\to~K^-\pi^+$) and B($D_2^*(2460)^+\to~D^0\pi^+$) = 30%.

$\Gamma(\overline{D}_2^*(2460)^-\rho^+)/\Gamma_{\text{total}}$

 Γ_{24}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.0049	90	98 ALAM	94	CLE2	$e^+e^- ightarrow \gamma(4S)$

⁹⁸ ALAM 94 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0 \to K^-\pi^+$) and B($D_2^*(2460)^+ \to D^0\pi^+$) = 30%.

$\Gamma(D^-D^+)/\Gamma_{\text{total}}$

 Γ_{25}/Γ

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
$< 5.9 \times 10^{-3}$	90	BARATE	98Q ALEP	$e^+e^- ightarrow Z$
$<1.2 \times 10^{-3}$	90	ASNER	97 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

$\Gamma(D^-D_s^+)/\Gamma_{\text{total}}$

 Γ_{26}/Γ

\ 5 // total				20/
<u>VALUE</u> <u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
0.0080±0.0030 OUR AVERAGE				
$0.0084\!\pm\!0.0030 \!+\!0.0020 \\ -0.0021$	⁹⁹ GIBAUT 96	CLE2	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$0.013 \pm 0.011 \pm 0.003$	100 ALBRECHT 92G	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.007\ \pm0.004\ \pm0.002$	¹⁰¹ BORTOLETTO92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following	data for averages, fits, lin	nits, etc.	. • • •	
	102	CL = 0	1	00(+0)

^{0.012} \pm 0.007 3 102 BORTOLETTO90 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

⁹⁹ GIBAUT 96 reports $0.0087 \pm 0.0024 \pm 0.0020$ for B($D_s^+ \to \phi \pi^+$) = 0.035. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

- ¹⁰⁰ ALBRECHT 92G reports $0.017 \pm 0.013 \pm 0.006$ for $B(D_s^+ \to \phi \pi^+) = 0.027$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ branching ratios, e.g., $B(D^+ \to K^- \pi^+ \pi^+) = 7.7 \pm 1.0\%$.
- 101 BORTOLETTO 92 reports $0.0080 \pm 0.0045 \pm 0.0030$ for $B(D_s^+ \to \phi \pi^+) = 0.030 \pm 0.011$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.
- 102 BORTOLETTO 90 assume B($D_s \rightarrow \phi \pi^+$) = 2%. Superseded by BORTOLETTO 92.

DOCUMENT ID TECN COMMENT

$\Gamma(D^*(2010)^-D_s^+)/\Gamma_{\text{total}}$

 Γ_{27}/Γ

0.0096±0.0034 OUR AVERAGE								
$0.0090 \pm 0.0027 \pm 0.0022$	103 GIBAUT 96 CLE2 $e^+e^- ightarrow \varUpsilon(4S)$							
$0.010\ \pm0.008\ \pm0.003$	104 ALBRECHT 92G ARG $e^+e^- ightarrow \varUpsilon(4S)$							
$0.013\ \pm0.008\ \pm0.003$	105 BORTOLETTO92 CLEO $e^+e^- ightarrow~ \varUpsilon$ (4 S)							
 • • We do not use the following data for averages, fits, limits, etc. • • 								
0.024 ± 0.014	3 106 BORTOLETTO90 CLEO $e^+e^- ightarrow \gamma (4S)$							

- 103 GIBAUT 96 reports $0.0093 \pm 0.0023 \pm 0.0016$ for B($D_s^+ \to \phi \pi^+$) = 0.035. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹⁰⁴ ALBRECHT 92G reports $0.014 \pm 0.010 \pm 0.003$ for $B(D_s^+ \to \phi \pi^+) = 0.027$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ and $D^*(2010)^+$ branching ratios, e.g., $B(D^0 \to K^- \pi^+) = 3.71 \pm 0.25\%$, $B(D^+ \to K^- \pi^+ \pi^+) = 7.1 \pm 1.0\%$, and $B(D^*(2010)^+ \to D^0 \pi^+) = 55 \pm 4\%$.
- ¹⁰⁵ BORTOLETTO 92 reports $0.016 \pm 0.009 \pm 0.006$ for $B(D_s^+ \to \phi \pi^+) = 0.030 \pm 0.011$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.
- 106 BORTOLETTO 90 assume B($D_{\rm S}
 ightarrow \phi \pi^+$) = 2%. Superseded by BORTOLETTO 92.

DOCUMENT ID TECN COMMENT

$\Gamma(D^-D_s^{*+})/\Gamma_{\text{total}}$

 Γ_{28}/Γ

0.010 ± 0.005 OUR AVERAGE			
$0.010\pm0.004\pm0.002$	107 GIBAUT		$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.020 \pm 0.014 \pm 0.005$	¹⁰⁸ ALBRECHT	92G ARG	$e^+e^- o ag{7}(4S)$

- 107 GIBAUT 96 reports $0.0100\pm0.0035\pm0.0022$ for B($D_s^+\to\phi\pi^+$) = 0.035. We rescale to our best value B($D_s^+\to\phi\pi^+$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹⁰⁸ ALBRECHT 92G reports $0.027 \pm 0.017 \pm 0.009$ for $B(D_s^+ \to \phi \pi^+) = 0.027$. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ branching ratios, e.g., $B(D^+ \to K^- \pi^+ \pi^+) = 7.7 \pm 1.0\%$.

 $[\Gamma(D^*(2010)^-D_s^+) + \Gamma(D^*(2010)^-D_s^{*+})]/\Gamma_{\text{total}}$ DOCUMENT ID TECN COMMENT 22 109 BORTOLETTO90 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

109 BORTOLETTO 90 reports 7.5 \pm 2.0 for B($D_s^+ o \phi \pi^+$) = 0.02. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = (3.6 \pm 0.9) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(D^*(2010)^-D_s^{*+})/\Gamma_{\text{total}}$

 Γ_{29}/Γ

0.020 ± 0.007 OUR AVERAGE 110 GIBAUT 96 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.020\pm0.006\pm0.005$ ¹¹¹ ALBRECHT 92G ARG $e^+e^- \rightarrow \Upsilon(4S)$ $0.019 \pm 0.011 \pm 0.005$

¹¹⁰ GIBAUT 96 reports $0.0203 \pm 0.0050 \pm 0.0036$ for B($D_s^+ \to \phi \pi^+$) = 0.035. We rescale to our best value $B(D_s^+ \to \phi \pi^+) = (3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹¹¹ ALBRECHT 92G reports 0.026 \pm 0.014 \pm 0.006 for B($D_s^+ \rightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = $(3.6 \pm 0.9) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^+ and $D^*(2010)^+$ branching ratios, e.g., $B(D^0 \to K^-\pi^+) =$ $3.71 \pm 0.25\%$, B(D⁺ $\rightarrow K^-\pi^+\pi^+$) = $7.1 \pm 1.0\%$, and B(D*(2010)⁺ $\rightarrow D^0\pi^+$)

 $\Gamma(D_s^+\pi^-)/\Gamma_{\rm total}$

 Γ_{30}/Γ

• • • We do not use the following data for averages, fits, limits, etc. •

¹¹³ BORTOLETTO90 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ < 0.0013

 112 ALEXANDER 93B reports < 2.7 imes 10 $^{-4}$ for B($D_{_{m S}}^{+}$ ightarrow $\phi\pi^{+}$) = 0.037. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 $^{113}\,\mathrm{BORTOLETTO}$ 90 assume B($D_{\mathrm{S}} \rightarrow ~\phi\pi^{+}) = 2\%.$

 Γ_{31}/Γ

 114 ALEXANDER 93B reports < 4.4 imes 10^{-4} for B($D_{_S}^+$ ightarrow $\phi\pi^+$) = 0.037. We rescale to our best value B($D_s^+ o \phi \pi^+$) = 0.036.

Created: 6/20/2000 14:10

 $\frac{\left[\Gamma\left(D_{s}^{+}\pi^{-}\right)+\Gamma\left(D_{s}^{-}K^{+}\right)\right]/\Gamma_{\text{total}}}{20.0013} \frac{CL\%}{90} \frac{\frac{DOCUMENT\ ID}{ALBRECHT}}{115\ ALBRECHT} \frac{TECN}{93E\ ARG} \frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$

 115 ALBRECHT 93E reports $< 1.7 \times 10^{-3}$ for B($D_{\rm s}^+
ightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 $\left[\Gamma\!\left(D_s^{*+}\pi^-\right) + \Gamma\!\left(D_s^{*-}K^+\right)\right]/\Gamma_{\rm total}$ $\frac{CL\%}{90}$ $\frac{DOCUMENT~ID}{116}$ $\frac{TECN}{4S}$ $\frac{COMMENT}{e^+e^- \rightarrow \Upsilon(4S)}$

 116 ALBRECHT 93E reports $< 1.2 \times 10^{-3}$ for B($D_s^+
ightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 $\Gamma \big(D_s^+ \rho^-\big)/\Gamma_{\mathsf{total}}$ Γ_{32}/Γ

 $\frac{\text{CL\%}}{90}$ $\frac{\text{DOCUMENT ID}}{117}$ $\frac{\text{TECN}}{\text{ALEXANDER}}$ $\frac{\text{COMMENT}}{938}$ $\frac{\text{CLE2}}{\text{e}^+\text{e}^-} \rightarrow \Upsilon(4S)$ < 0.0007

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet

¹¹⁸ ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$ 90

 117 ALEXANDER 93B reports $<6.6 imes10^{-4}$ for B($D_{s}^{+}
ightarrow~\phi\pi^{+}$) = 0.037. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 118 ALBRECHT 93E reports $< 2.2 \times 10^{-3}$ for B($D_s^+
ightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 $\Gamma(D_s^{*+}\rho^-)/\Gamma_{\text{total}}$

 Γ_{33}/Γ

 $\frac{\text{CL}\%}{90}$ $\frac{\text{DOCUMENT ID}}{\text{119}}$ $\frac{\text{TECN}}{\text{ALEXANDER}}$ $\frac{\text{COMMENT}}{93}$ $\frac{\text{CLE2}}{\text{e}^+\text{e}^-} \rightarrow \Upsilon(4S)$

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet

¹²⁰ ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$

 119 ALEXANDER 93B reports < 7.4 imes 10 $^{-4}$ for B($D_s^+
ightarrow \phi \pi^+$) = 0.037. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 120 ALBRECHT 93E reports $< 2.5 \times 10^{-3}$ for B($D_s^+
ightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_c^+ \rightarrow \phi \pi^+$) = 0.036.

 $\Gamma(D_s^+ a_1(1260)^-)/\Gamma_{\text{total}}$

 Γ_{34}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<0.0026	90	121 ALBRECHT	93E ARG	$e^+e^- ightarrow \Upsilon(4S)$

 121 ALBRECHT 93E reports $< 3.5 \times 10^{-3}$ for B($D_s^+
ightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

Created: 6/20/2000 14:10

$$\Gamma(D_s^{*+}a_1(1260)^-)/\Gamma_{total}$$

VALUE

90

20.0022

γ ΔΕΒΡΕCHT

93E ARG

 $e^+e^- \rightarrow \Upsilon(4S)$

 122 ALBRECHT 93E reports $< 2.9 \times 10^{-3}$ for B($D_s^+
ightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 $\Gamma(D_{\epsilon}^{-}K^{+})/\Gamma_{\text{total}}$ Γ_{36}/Γ $rac{DOCUMENT~ID}{123}$ $m ALEXANDER~93B~CLE2~e^+e^-
ightarrow \it \Upsilon(4S)$ < 0.00024 ullet ullet We do not use the following data for averages, fits, limits, etc. ullet¹²⁴ BORTOLETTO90 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 90 123 ALEXANDER 93B reports < 2.3 imes 10 $^{-4}$ for B($D_s^+
ightarrow \phi \pi^+$) = 0.037. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036. $^{124}\, {\rm BORTOLETTO}$ 90 assume ${\rm B}(D_{\rm S} \rightarrow ~\phi \pi^+) = 2\%.$ $\Gamma(D_s^{*-}K^+)/\Gamma_{\text{total}}$ Γ_{37}/Γ $\frac{\textit{CL\%}}{90}$ $\frac{\textit{DOCUMENT ID}}{125}$ ALEXANDER 93B CLE2 $e^+e^-
ightarrow \varUpsilon(4S)$ VALUE < 0.00017 125 ALEXANDER 93B reports < 1.7 imes 10 $^{-4}$ for B($D_{_{
m S}}^{+}$ ightarrow $\phi\pi^{+}$) = 0.037. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036. $\Gamma(D_s^-K^*(892)^+)/\Gamma_{total}$ Γ_{38}/Γ $\frac{CL\%}{90}$ $\frac{DOCUMENT\ ID}{126}$ $\frac{TECN}{126}$ $\frac{COMMENT}{126}$ $\frac{COMMENT}{126}$ $\frac{COMMENT}{126}$ $\frac{COMMENT}{126}$ • • • We do not use the following data for averages, fits, limits, etc. • • ¹²⁷ ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$ < 0.0034 126 ALEXANDER 93B reports < 9.7 imes 10^{-4} for B($D_s^+ o \phi \pi^+$) = 0.037. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036. 127 ALBRECHT 93E reports $< 4.6 imes 10^{-3}$ for B $(D_{_S}^+
ightarrow \phi \pi^+) =$ 0.027. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036. Γ_{39}/Γ • • We do not use the following data for averages, fits, limits, etc. • 90 ¹²⁹ ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$ 128 ALEXANDER 93B reports < $11.0 imes 10^{-4}$ for B($D_s^+ o \phi \pi^+$) = 0.037. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036. 129 ALBRECHT 93E reports $<5.8 imes10^{-3}$ for B($D_s^+
ightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_{\epsilon}^+ \rightarrow \phi \pi^+$) = 0.036. $\Gamma \big(D_s^- \pi^+ \, K^0 \big) / \Gamma_{\rm total}$ Γ_{40}/Γ 130 ALBRECHT 93E reports $<7.3 imes10^{-3}$ for B(D_s^+ ightarrow $\phi\pi^+$) = 0.027. We rescale to our

best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 $\Gamma(D_s^{*-}\pi^+K^0)/\Gamma_{total}$ VALUE CL% DOCUMENT ID TECN COMMENT COMMENT

¹³¹ ALBRECHT 93E reports $< 4.2 \times 10^{-3}$ for B($D_s^+ \rightarrow \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 0.036.

 $\Gamma(D_s^-\pi^+K^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{42}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	COMMENT
<0.004	90	132 ALBRECHT	93E ARG	$e^+e^- ightarrow \gamma(4S)$

 132 ALBRECHT 93E reports $<5.0\times10^{-3}$ for B(D $_s^+\to~\phi\pi^+)=0.027.$ We rescale to our best value B(D $_s^+\to~\phi\pi^+)=0.036.$

$\Gamma(D_s^{*-}\pi^+K^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{43}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	COMMENT
<0.0020	90	¹³³ ALBRECHT	93E ARG	$e^+e^- ightarrow ~ $

¹³³ ALBRECHT 93E reports $< 2.7 \times 10^{-3}$ for B($D_s^+ \to \phi \pi^+$) = 0.027. We rescale to our best value B($D_s^+ \to \phi \pi^+$) = 0.036.

 $\Gamma(\overline{D}^0\pi^0)/\Gamma_{\text{total}}$

 Γ_{44}/Γ

<u>VALUE</u>	CL%	<u>DOCUMENT ID</u>		TECN	COMMENT
<0.00012	90	134 NEMATI	98	CLE2	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

<0.00048 90 ¹³⁵ ALAM

94 CLE2 Repl. by NEMATI 98

Created: 6/20/2000 14:10

¹³⁵ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0 \to K^-\pi^+$) and the PDG 1992 B($D^0 \to K^-\pi^+\pi^0$)/B($D^0 \to K^-\pi^+$) and B($D^0 \to K^-\pi^+\pi^+\pi^-$)/B($D^0 \to K^-\pi^+$).

 $\Gamma(\overline{D}{}^{0}\rho^{0})/\Gamma_{\text{total}}$

 Γ_{45}/Γ

(,),				
<u>VALUE</u>	CL% EVTS	DOCUMENT ID	TECN	<u>COMMENT</u>
<0.00039	90	136 NEMATI 9	8 CLE2	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 0.00055	90		¹³⁷ ALAM	94	CLE2	Repl. by NEMATI 98
< 0.0006	90		¹³⁸ BORTOLETTO) 92	CLEO	$e^+e^- ightarrow \gamma(4S)$
< 0.0027	90	4	¹³⁹ ALBRECHT	88k	ARG	$e^+e^- \rightarrow \gamma(4S)$

¹³⁶ NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions.

¹³⁴ NEMATI 98 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the PDG 96 values for D^0 , D^{*0} , η , η' , and ω branching fractions.

¹³⁷ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II absolute B($D^0 \to K^-\pi^+$) and the PDG 1992 B($D^0 \to K^-\pi^+\pi^0$)/B($D^0 \to K^-\pi^+$) and B($D^0 \to K^-\pi^+\pi^+\pi^-$)/B($D^0 \to K^-\pi^+$).

¹³⁸ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D.

¹³⁹ ALBRECHT 88K reports < 0.003 assuming $B^0 \, \overline{B}{}^0 : B^+ \, B^-$ production ratio is 45:55. We rescale to 50%.

$\Gamma(\overline{D}{}^0\eta)/\Gamma_{ m total}$						Γ ₄₆ /Γ
VALUE	<u>CL%</u>					
<0.00013	90	¹⁴⁰ NEMATI	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use	e the follow	ing data for average	s, fits	, limits,	etc. • • •	
< 0.00068	90	¹⁴¹ ALAM	94	CLE2	Repl. by N	EMATI 98
¹⁴⁰ NEMATI 98 assu					\varUpsilon (4 S) and us	se the PDG 96
		and ω branching frac				
	$\rightarrow K^-\pi^+)$	oduction of B^+ and and the PDG 1992 B $(D^0 ightarrow K^- \pi)$	$(D^0 -$			
$\Gamma(\overline{D}{}^0\eta')/\Gamma_{ m total}$						Γ ₄₇ /Γ
VALUE		DOCUMENT ID				
<0.00094	90	142 NEMATI				T(4S)
• • We do not use						
<0.00086	90	¹⁴³ ALAM			Repl. by N	
¹⁴² NEMATI 98 assı					\varUpsilon (4 S) and us	se the PDG 96
values for D^0 , D) *0 , η , η' , a	and ω branching frac	tions.			
143 ALAM 94 assum absolute B(D^0 $ ightharpoonup$ and B(D^0 $ ightharpoonup$ K	ne equal pro $\rightarrow K^-\pi^+)$		В ⁰ а (D ⁰ -	it the γ	$\Gamma(4S)$ and us $\pi^+\pi^0)/{\sf B}(D)$	be the CLEO II $0 ightarrow {\it K}^- \pi^+)$
143 ALAM 94 assum absolute B(D^0 $ ightharpoonup$ and B(D^0 $ ightharpoonup$ K	ne equal pro $\rightarrow K^-\pi^+)$	oduction of B^+ and and the PDG 1992 B	В ⁰ а (D ⁰ -	it the γ	$\hat{\pi}^{(4S)}$ and us $\pi^{+}\pi^{0})/B(D^{0})$	te the CLEO II $0 o \kappa^-\pi^+)$
143 ALAM 94 assum absolute B(D^0 $-$ and B(D^0 $ ightarrow$ κ	ne equal pro $\rightarrow K^-\pi^+)$	oduction of B^+ and and the PDG 1992 B $^-$) $/$ B $(D^0 o K^-\pi)$	B ⁰ a (D ⁰ -	it the γ \rightarrow K^{-}	π ⁺ π ⁰)/B(<i>D</i>	$^0 ightarrow extit{K}^- \pi^+)$
143 ALAM 94 assum absolute B(D^0 - and B(D^0 $ ightarrow$ κ	ne equal pro $ \begin{array}{ccc} & K - \pi^+) \\ & K - \pi^+ \pi^+ \pi^- \end{array} $ $ \frac{CL\%}{90} $	oduction of B^+ and and the PDG 1992 B r^-)/B($D^0 ightarrow K^- \pi$ $\frac{DOCUMENT\ ID}{144}$ NEMATI	B^{0} and B^{0	at the γ $\rightarrow K^{-}$ \sim	$(a^{+} a^{0})/B(D)$ $\frac{COMMENT}{e^{+}e^{-}} \rightarrow$	$^0 ightarrow extit{K}^- \pi^+)$
143 ALAM 94 assum absolute B(D^0 - and B(D^0 $ ightarrow$ κ	ne equal pro $ \begin{array}{ccc} & K - \pi^+) \\ & K - \pi^+ \pi^+ \pi^- \end{array} $ $ \frac{CL\%}{90} $	oduction of B^+ and and the PDG 1992 B σ^-)/B($D^0 o K^-\pi^-$) $\frac{DOCUMENT\ ID}{144\ NEMATI}$ ing data for average	B^{0} and B^{0	at the γ $\rightarrow K^{-}$ \sim	$(a^{+} a^{0})/B(D)$ $\frac{COMMENT}{e^{+}e^{-}} \rightarrow$	$^0 ightarrow extit{K}^- \pi^+)$
143 ALAM 94 assum absolute B(D^0 $-$ and B(D^0 $ ightarrow$ κ κ κ κ κ κ	ne equal pro $ \begin{array}{ccc} & K - \pi^+) \\ & K - \pi^+ \pi^+ \pi^- \end{array} $ $ \frac{CL\%}{90} $	oduction of B^+ and and the PDG 1992 B r^-)/B($D^0 ightarrow K^- \pi$ $\frac{DOCUMENT\ ID}{144}$ NEMATI	B^0 a $(D^0 - +)$.	at the γ $\rightarrow K^{-}$ $\frac{TECN}{CLE2}$, limits,	$(a^{+} a^{0})/B(D)$ $\frac{COMMENT}{e^{+}e^{-}} \rightarrow$	$rac{0 ightarrow \kappa^-\pi^+)}{\Gamma_{f 48}/\Gamma}$
143 ALAM 94 assum absolute $B(D^0 \rightarrow K)$ and $B(D^0 \rightarrow K)$ $\Gamma(\overline{D^0}\omega)/\Gamma_{total}$ $VALUE$ < 0.00051 \bullet \bullet We do not use < 0.00063 144 NEMATI 98 assumble $VALUE$	the equal property $K = \pi + \gamma$ and $K = \pi + \gamma$	oduction of B^+ and and the PDG 1992 B σ^-)/B($D^0 o K^-\pi^-$) $\frac{DOCUMENT\ ID}{144\ NEMATI}$ ing data for average $145\ ALAM$ production of B^+ and ω branching frac	B^0 and B^0	at the γ $\rightarrow K^{-}$ γ	$\frac{COMMENT}{e^+e^-} ightarrow etc. ightharpoonup et$ Repl. by N $\Upsilon(4S)$ and us	$0 o extit{K}^-\pi^+)$ Γ_{48}/Γ $\Upsilon(4S)$ EMATI 98 se the PDG 96
143 ALAM 94 assum absolute $B(D^0 \rightarrow K)$ and $B(D^0 \rightarrow K)$ $\Gamma(\overline{D^0}\omega)/\Gamma_{total}$ $VALUE$ < 0.00051 \bullet \bullet We do not use < 0.00063 144 NEMATI 98 assum values for D^0 , D^0	the equal property $K = \pi + \gamma$ and $K = \pi + \gamma$	oduction of B^+ and and the PDG 1992 B σ^-)/B($D^0 o K^-\pi^-$) $\frac{DOCUMENT\ ID}{144\ NEMATI}$ ing data for average $145\ ALAM$ production of B^+ and ω branching frac	B^0 a $(D^0 - B^0)$	at the γ $\rightarrow K^{-}$ $TECN$ $CLE2$ $TECS$	$(a^+ \pi^0)/B(D)$ $\frac{COMMENT}{e^+ e^-} \rightarrow \text{etc.} \bullet \bullet \bullet \bullet$ Repl. by N $(a^+ \pi^0)$ and us $(a^+ \pi^0)$	$0 \to K^-\pi^+$)
143 ALAM 94 assum absolute $B(D^0 \rightarrow K)$ and $B(D^0 \rightarrow K)$ $\Gamma(\overline{D^0}\omega)/\Gamma_{total}$ $VALUE$ < 0.00051 • • • We do not use < 0.00063 144 NEMATI 98 assum values for D^0 , D^0 145 ALAM 94 assum absolute $B(D^0 \rightarrow K)$ and $B(D^0 \rightarrow K)$ $\Gamma(\overline{D^*(2007)^0}\pi^0)$	the equal property $K - \pi + \gamma$ and $K - \pi + \gamma$ and $K - \pi + \gamma$ by $K - \pi + \gamma$ and $K - \pi + \gamma$	oduction of B^+ and and the PDG 1992 B e^-)/B($D^0 \rightarrow K^-\pi$) $\frac{DOCUMENT\ ID}{144}$ NEMATI ing data for average 145 ALAM production of B^+ and and ω branching fraction of B^+ and and the PDG 1992 B e^-)/B($D^0 \rightarrow K^-\pi$	B^{0} a $(D^{0} - 1)$. B^{0} as, fits B^{0} as $(D^{0} - 1)$.	at the γ $\rightarrow K^{-}$ CLE2 , limits, CLE2 at the γ at the γ	$(a^+ \pi^0)/B(D)$ $\frac{COMMENT}{e^+ e^-} \rightarrow \text{etc.} \bullet \bullet \bullet \text{Repl. by N}$ $(a^+ \pi^0)/B(D)$ $(a^+ \pi^0)/B(D)$	$0 \to K^-\pi^+$)
143 ALAM 94 assum absolute $B(D^0 \rightarrow K)$ and $B(D^0 \rightarrow K)$ $\Gamma(\overline{D^0}\omega)/\Gamma_{total}$ $VALUE$ < 0.00051 \bullet \bullet We do not use < 0.00063 144 NEMATI 98 assum absolute $B(D^0 \rightarrow K)$ and $B(D^0 \rightarrow K)$ $\Gamma(\overline{D^*(2007)^0}\pi^0)$ $VALUE$	the equal property $K = \pi + \gamma$ and $K = \pi + \gamma$ and $K = \pi + \gamma$ by the following g_0 and equal property $g_0 = \pi + \gamma$ and $g_0 = \pi + \gamma$	oduction of B^+ and and the PDG 1992 B e^-)/B($D^0 \rightarrow K^-\pi$) $\frac{DOCUMENT\ ID}{144}$ NEMATI ing data for average 145 ALAM production of B^+ and and ω branching fraction of B^+ and and the PDG 1992 B e^-)/B($D^0 \rightarrow K^-\pi$	B^{0} a $(D^{0} - 1)$. B^{0} as, fits B^{0} as $(D^{0} - 1)$.	at the γ $\rightarrow K^{-}$ CLE2 , limits, CLE2 at the γ at the γ	$(a^+ \pi^0)/B(D)$ $\frac{COMMENT}{e^+ e^-} \rightarrow \text{etc.} \bullet \bullet \bullet \text{Repl. by N}$ $(a^+ \pi^0)/B(D)$ $(a^+ \pi^0)/B(D)$	$0 ightarrow \kappa^- \pi^+)$ Γ_{48}/Γ $T(4S)$ EMATI 98 See the PDG 96 See the CLEO II $0 ightarrow \kappa^- \pi^+)$ Γ_{49}/Γ
143 ALAM 94 assum absolute $B(D^0 \rightarrow K)$ and $B(D^0 \rightarrow K)$ $\Gamma(\overline{D^0}\omega)/\Gamma_{total}$ $VALUE$ < 0.00051 \bullet \bullet \bullet We do not use < 0.00063 \bullet \bullet \bullet WEMATI 98 assum absolute \bullet	the equal property in the equal property is $K - \pi^+$) and $K - \pi^+$ and $K - \pi^+$) are equal property is $K - \pi^+$) and $K - \pi^+$	oduction of B^+ and and the PDG 1992 B e^-)/B($D^0 \rightarrow K^-\pi$) 144 NEMATI ing data for average 145 ALAM production of B^+ and and the PDG 1992 B e^-)/B($D^0 \rightarrow K^-\pi$) 146 NEMATI	B^{0} a $(D^{0} - B^{0})$ and B^{0} a	at the γ $\rightarrow K^-$ CLE2 , limits, CLE2 at the γ $\rightarrow K^-$ TECN CLE2	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow \text{etc.} \bullet \bullet \bullet$ Repl. by N $\Upsilon(4S) \text{ and us}$ $\pi^{+}\pi^{0})/B(D$ $\frac{COMMENT}{e^{+}e^{-}} \rightarrow$	$0 ightarrow \kappa^- \pi^+)$ Γ_{48}/Γ $T(4S)$ EMATI 98 See the PDG 96 See the CLEO II $0 ightarrow \kappa^- \pi^+)$ Γ_{49}/Γ
143 ALAM 94 assum absolute $B(D^0 \rightarrow K)$ and $B(D^0 \rightarrow K)$ $\Gamma(\overline{D^0}\omega)/\Gamma_{total}$ N	the equal property in the equal property is $K - \pi^+$) and $K - \pi^+$ and $K - \pi^+$) are equal property is $K - \pi^+$) and $K - \pi^+$	oduction of B^+ and and the PDG 1992 B e^-)/B($D^0 \rightarrow K^-\pi$) $\frac{DOCUMENT\ ID}{144}$ NEMATI ing data for average 145 ALAM production of B^+ and and ω branching fraction of B^+ and and the PDG 1992 B e^-)/B($D^0 \rightarrow K^-\pi$	B ⁰ a (D ⁰ -++). 98 s, fits 94 d B ⁰ a (D ⁰ -++). 98 s, fits s, fits s, fits	at the γ $\rightarrow K^-$ CLE2, limits, CLE2 at the γ $\rightarrow K^ \rightarrow K^-$ TECN CLE2, limits,	$\frac{COMMENT}{e^{+}e^{-}} \rightarrow \text{etc.} \bullet \bullet \bullet$ Repl. by N $\Upsilon(4S) \text{ and us}$ $\pi^{+}\pi^{0})/B(D$ $\frac{COMMENT}{e^{+}e^{-}} \rightarrow$	$0 ightarrow \kappa^- \pi^+)$ Γ_{48}/Γ $T(4S)$ EMATI 98 See the PDG 96 See the CLEO II $0 ightarrow \kappa^- \pi^+)$ Γ_{49}/Γ $T(4S)$

values for D^0 , D^{*0} , η , η' , and ω branching fractions. ¹⁴⁷ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$.

$\Gamma(\overline{D}^*(2007)^0 \rho^0$	$^{\prime})/\Gamma_{\mathrm{total}}$					Γ ₅₀ /Ι
VALUE	<u>CL%</u>	DOCUMENT ID				
< 0.00056	90	¹⁴⁸ NEMATI	98 (CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not i	use the follow	ing data for averag	es, fits, l	limits,	etc. • • •	
< 0.00117	90	¹⁴⁹ ALAM	94 (CLE2	Repl. by N	IEMATI 98
		production of B^+ a and ω branching fra		t the ´	$\varUpsilon(4S)$ and ι	ise the PDG 9
$B(D^*(2007)^0$	$ ightarrow~D^0\pi^0$) as	oduction of B^+ and absolute $B(D^0 - \pi^+)$ and $B(D^0 - \pi^+)$	$\rightarrow K^- \pi$	$ au^+$) ar	nd the PDG	1992 B(D^0 –
$\Gamma(\overline{D}^*(2007)^0\eta)$			_			Γ ₅₁ /Γ
VALUE	<u>CL%</u>) 1	TECN_	<u>COMMENT</u>	00(4.6)
<0.00026	90	¹⁵⁰ NEMATI ing data for averag				7(45)
		151 ALAM				
<0.00069	90				Repl. by N	
values for D^0 ,	D^{*0} , η , η' , a	and ω branching fra	actions.			
values for D^0 , 151 ALAM 94 assu $B(D^*(2007)^0 \ K^- \pi^+ \pi^0)/B$	D^{*0} , η , η' , a sume equal pro $ ightarrow D^0 \pi^0$) as $(D^0 ightarrow K^{-1})$		actions. $d \ B^0 \ at \ ightarrow K^- \pi$	the $ { au}_{ au}^{+})$ ar	$\hat{\ }(4S)$ and u	se the CLEO I $1992 \text{ B}(D^0 - K^- \pi^+).$
values for D^0 , 151 ALAM 94 assu $B(D^*(2007)^0 \ K^- \pi^+ \pi^0)/B$	D^{*0} , η , η' , a sume equal pro $\rightarrow D^0\pi^0$) at $(D^0\rightarrow K^-\pi^0)$	and ω branching fraction of B^+ and absolute ${\sf B}(D^0-\pi^+)$ and ${\sf B}(D^0-\pi^+)$	actions. d B^0 at $ ightarrow K^-\pi$	the γ $^+$) ar $^+$ $_\pi$	$\Gamma(4S)$ and und the PDG $^-$)/B(D^0 $^-$	se the CLEO I 1992 B($D^0-K^-\pi^+$).
values for D^0 , 151 ALAM 94 assu $B(D^*(2007)^0 \ K^-\pi^+\pi^0)/B$ $\Gamma(\overline{D}^*(2007)^0 \eta^0)$ VALUE	D^{*0} , η , η' , a sume equal pro $D^0\pi^0$) at $D^0 \to K^{-1}$.	and ω branching fraction of B^+ and absolute $B(D^0-\pi^+)$ and $B(D^0-\pi^+)$	actions. d B^0 at \to $K^-\pi$	the γ τ^+) ar π^+ π^-	$\Gamma(4S)$ and und the PDG $^-$)/B(D^0 $^-$	se the CLEO $^{\circ}$ 1992 B($D^0 ^{\circ}$ $K^-\pi^+$).
values for D^0 , 151 ALAM 94 assumption $B(D^*(2007)^0 K^- \pi^+ \pi^0)/B$ $\Gamma(\overline{D}^*(2007)^0 \eta')$ VALUE <0.0014	D^{*0} , η , η' , a sume equal pro $D^0 \pi^0$) as $D^0 \pi^0$. A $D^0 \pi^0$ $D^0 \pi^0$. A $D^0 \pi^0$ $D^0 \pi^0$ $D^0 \pi^0$. A $D^0 \pi^0$ D^0 $D^$	and ω branching fraction of B^+ and absolute $\mathrm{B}(D^0-\pi^+)$ and $\mathrm{B}(D^0-\pi^+)$ and $\mathrm{B}(D^0-\pi^+)$	ections. d B^0 at \rightarrow $K^-\pi^+$	the γ π^+) ar $\pi^+\pi^ \pi^ \pi^ \pi^ \pi^ \pi^ \pi^-$	$\Gamma(4S)$ and und the PDG $\Gamma(D^0)$ $\Gamma(D^$	se the CLEO I 1992 B($D^0-K^-\pi^+$).
values for D^0 , 151 ALAM 94 assu $B(D^*(2007)^0 K^-\pi^+\pi^0)/B$ $\Gamma(\overline{D^*(2007)^0}\eta')$ VALUE <0.0014 • • • We do not use	D^{*0} , η , η' , a sume equal pro $D^0\pi^0$) at $D^0\pi^0$ $D^0\pi^0$. A $D^0\pi^0$ $D^$	and ω branching fraction of B^+ and absolute $\mathrm{B}(D^0 \to \pi^+)$ and $\mathrm{B}(D^0 \to DOCUMENT~IC}$ BRANDENB.	actions. d B^0 at $\rightarrow K^-\pi^+$ $C^0 = C^0$ ges, fits, C^0	the γ are π^+) are $\pi^+\pi^-$	$\Gamma(4S)$ and und the PDG $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ $\Gamma(AS$	se the CLEO I 1992 B($D^0-K^-\pi^+$). $ \Gamma_{52}/\Gamma_{52}/\Gamma_{53}$
values for D^0 , 151 ALAM 94 assumption $B(D^*(2007)^0)$ $K^-\pi^+\pi^0$ /B $F(\overline{D}^*(2007)^0\eta^0)$ VALUE <0.0014 < 0.0019	D^{*0} , η , η' , a time equal pro $D^0\pi^0$) at $D^0\pi^0$ $D^0\pi^0$. A constant $D^0\pi^0\pi^0$ at $D^0\pi^0\pi^0$ at $D^0\pi^0\pi^0$ and $D^0\pi^0\pi^0\pi^0$ are the follow $D^{*0}\pi^0\pi^0\pi^0$ and $D^{*0}\pi^0\pi^0\pi^0\pi^0\pi^0$ are the follow $D^{*0}\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi$	and ω branching fraction of B^+ and absolute $\mathrm{B}(D^0\to\pi^+)$ and $\mathrm{B}(D^0\to DOCUMENT/ID)$ BRANDENB. Ing data for averag	actions. d B^0 at $\rightarrow K^-\pi^+$ $K^-\pi^+$ $\frac{9}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{100000}$ $\frac{1}{10000000000000000000000000000000000$	the γ τ^+) are $\pi^+\pi^-$ CLE2 limits,	$\Gamma(4S)$ and und the PDG $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ are $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS$	se the CLEO $^{\circ}$ 1992 B(D° $^{\circ}$ $^$
values for D^0 , 151 ALAM 94 assuming $B(D^*(2007)^0 \kappa^- \pi^+ \pi^0)/B$ $\Gamma(\overline{D^*(2007)^0 \eta'})$ VALUE < 0.0014 • • • We do not use 0.0019 < 0.0027	D^{*0} , η , η' , a time equal pro $D^0\pi^0$) at $D^0\pi^0$ at $D^0\pi^0$ $D^0\pi^0$ at $D^0\pi^$	and ω branching fraction of B^+ and absolute $\mathrm{B}(D^0\to\pi^+)$ and $\mathrm{B}(D^0\to DOCUMENT\ IED BRANDENBUT IS DESCRIPTION OF THE STATE O$	actions. d B^0 at $\rightarrow K^-\pi^+$ $K^-\pi^+$ M^0	the γ π^+) are $\pi^+\pi^-$ CLE2 CLE2 CLE2	$\Gamma(4S)$ and und the PDG $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS)$ are $\Gamma(AS)$ and $\Gamma(AS)$ are $\Gamma(AS$	se the CLEO 1992 B(D^0 \rightarrow $K^-\pi^+$). Γ_{52}/Γ Γ_{52}/Γ Γ_{52}/Γ Γ_{53}/Γ Γ_{54}/Γ Γ_{55}/Γ Γ_{55}/Γ Γ_{55}/Γ Γ_{55}/Γ Γ_{55}/Γ
values for D^0 , 151 ALAM 94 assuming $B(D^*(2007)^0)$ $K^-\pi^+\pi^0$ /B $\Gamma(\overline{D}^*(2007)^0\eta^0)$ VALUE <0.0014 • • • We do not use to 0.0019 <0.0027 152 NEMATI 98 as values for D^0 ,	D^{*0} , η , η' , a ume equal pro $D^0\pi^0$) at $D^0\pi^0$ at $D^0\pi^0$. A proof of $D^0\pi^0$ at $D^0\pi^0$ at D^{*0} ,	and ω branching fraction of B^+ and absolute $\mathrm{B}(D^0\to\pi^+)$ and $\mathrm{B}(D^0\to\pi^+)$	actions. d B^0 at $\rightarrow K^-\pi^+$ 0 0 0 0 0 0 0 0 0 0	the γ π^+) are $\pi^+\pi^-$ CLE2 limits, CLE2 ct the γ	$\Gamma(4S)$ and und the PDG $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$ and $\Gamma(AS)$	se the CLEO I 1992 B($D^0 - K^-\pi^+$).
values for D^0 , 151 ALAM 94 assuming $B(D^*(2007)^0 \ K^-\pi^+\pi^0)/B$ $\Gamma(\overline{D}^*(2007)^0 \ \eta')$ VALUE <0.0014 • • • We do not use to consider the constant of the constant	$D^{*0}, \eta, \eta', \epsilon$ ume equal pro $D^0\pi^0$) and $D^0\pi^0$) and $D^0\pi^0$ are the follows sumes equal prospective $D^{*0}, \eta, \eta', \epsilon$ ume equal pro $D^0\pi^0$) and $D^0\pi^0$	and ω branching fraction of B^+ and absolute $B(D^0 \to \pi^+)$ and $B(D^0 \to DOCUMENT \ ID)$ BRANDENB. Ing data for average 152 NEMATI 153 ALAM production of B^+ and B	ections. d B^0 at $\rightarrow K^-\pi^+$ $K^-\pi^+$	the γ τ^+) are τ^+ $\tau^ \tau^ \tau^ \tau^ \tau^+$) are τ^+) are	$\Gamma(4S)$ and und the PDG $\Gamma(4S)$ and $\Gamma(4S)$ and $\Gamma(4S)$ and und the PDG	se the CLEO I 1992 B(D^0 \rightarrow $K^-\pi^+$). Γ_{52}/Γ Γ_{4S} IEMATI 98 as the PDG 96 se the CLEO I 1992 B(D^0 \rightarrow
values for D^0 , 151 ALAM 94 assuming the second state of the se	D^{*0} , η , η' , a time equal production $D^0\pi^0$) at $D^0\pi^0$ and $D^0\pi^0$ at $D^0\pi^0$ at D^{*0} , η , η' , a time equal production $D^0\pi^0$ at $D^0\pi^0$ at $D^0\pi^0$ at $D^0\pi^0$ at $D^0\pi^0$	and ω branching fraction of B^+ and absolute $B(D^0 \to D^0)$ and $B(D^0 \to D^0)$	actions. d B^0 at $\rightarrow K^-\pi^+$ $\frac{D}{K^-\pi^+}$ $\frac{D}{M^0}$ $\frac{D}{M^0}$ $\frac{D}{M^0}$ $\frac{D}{M^0}$ actions. d B^0 at $\frac{D}{K^-\pi^+}$	the γ τ^+) are τ^+ $\tau^ \tau^ \tau^ \tau^ \tau^ \tau^ \tau^+$ $\tau^ \tau^ \tau^ \tau^ \tau^ \tau^-$	$\Gamma(4S)$ and und the PDG $\Gamma(4S)$ and $\Gamma(4S$	se the CLEO I 1992 B(D^0 — $K^-\pi^+$). \[\begin{align*} \begin{align*} \cdot \chi^- \pi^+ \end{align*} \] \[\begin{align*} \cdot (4S) \\ \text{T}(4S) \\ \text{JEMATI 98} \\ \text{ise the PDG 96} \\ \text{sethe CLEO I} \\ 1992 B(D^0 — $K^-\pi^+$). \[\begin{align*} \begin{align*} \cdot \chi^- \pi^+ \end{align*} \]
151 ALAM 94 assumption $B(D^*(2007)^0) = B(D^*(2007)^0) = B(D^*(2007)^0) = B(D^*(2007)^0 = B(D^*(2007)^0) =$	D^{*0} , η , η' , a time equal production $D^0\pi^0$) at $D^0\pi^0$ and $D^0\pi^0$ at $D^0\pi^0$ at D^{*0} , η , η' , a time equal production $D^0\pi^0$ at $D^0\pi^0$ at $D^0\pi^0$ at $D^0\pi^0$ at $D^0\pi^0$	and ω branching fraction of B^+ and absolute $B(D^0 \to D^0)$ and $B(D^0)$ are also and $B(D^0)$ and $B(D^0)$ are also absolute $B(D^0)$.	actions. d B^0 at $\rightarrow K^-\pi^+$ $\frac{D}{K^-\pi^+}$ $\frac{D}{M^0}$ $\frac{D}{M^0}$ $\frac{D}{M^0}$ $\frac{D}{M^0}$ actions. d B^0 at $\frac{D}{K^-\pi^+}$	the γ τ^+) are τ^+ $\tau^ \tau^ \tau^ \tau^ \tau^ \tau^ \tau^+$ $\tau^ \tau^ \tau^ \tau^ \tau^ \tau^-$	$\Gamma(4S)$ and und the PDG $\Gamma(4S)$ and $\Gamma(4S$	se the CLEO I 1992 B(D^0 — $K^-\pi^+$). \[\begin{align*} \begin{align*} \cdot \chi^-\pi^+ \end{align*} \] \[\begin{align*} \cdot (4S) \\ \end{align*} \] \[\text{Y}(4S) \\ \text{JEMATI 98} \\ \text{ise the PDG 96} \\ \text{se the CLEO I 1992 B}(D^0 — $K^-\pi^+$). \[\begin{align*} \begin{align*} \cdot \chi^-\pi^- \\ \cdot \end{align*} \]

Created: 6/20/2000 14:10

• • • We do not use the following data for averages, fits, limits, etc. • •

¹⁵⁵ ALAM 94 CLE2 Repl. by NEMATI 98 < 0.0021

 $^{^{154}}$ NEMATI 98 assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and use the PDG 96

values for D^0 , D^{*0} , η , η' , and ω branching fractions. 155 ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$.

Citation. D.L. Groc	oni et al. (i al	THE Date	.a Group), Eur. 1 hys. 30	ui. O1	.0, 1 (2000	o) (ONE. http://pug.ibi.gov)
Γ(<i>D</i> *(2010) ⁺	D*(2010)) ⁻)/Γ _t	total			Γ ₅₄ /Γ
VALUE		CL%	DOCUMENT ID		TECN	COMMENT
$(6.2^{f +4.0}_{-2.9}\pm 1.0$) × 10 ⁻⁴		¹⁵⁶ ARTUSO	99	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not	use the fo	ollowing	data for averages,	fits, l	limits, et	cc. • • •
< 6.1	\times 10 ⁻³	90	¹⁵⁷ BARATE	980	ALEP	$e^+e^- ightarrow Z$
< 2.2	$\times 10^{-3}$	90	¹⁵⁸ ASNER	97	CLE2	Repl. by ARTUSO 99
¹⁵⁶ ARTUSO 99	uses B(γ ((4 <i>S</i>) →	$B^{0}\overline{B}^{0})=(48\pm4)$.)%.		
¹⁵⁷ BARATE 980	(ALEPH)) observ	es 2 events with a	n expe	ected ba	ckground of 0.10 \pm 0.03
which corresp	onds to a	branchi	ing ratio of (2.3^{+1}_{-1})	L.9 1 2 ±	$0.4) \times 1$	0^{-3} .
¹⁵⁸ ASNER 97 a	t CLEO ob	serves	-	pecte	d backg	round of 0.022 \pm 0.011.

$\Gamma(D^*(2010)^+D^-)$	$/\Gamma_{ ext{total}}$					Γ ₅₅ ,	/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT		
$< 1.8 \times 10^{-3}$	90	ASNER	97	CLE2	$e^+e^- ightarrow$	$\Upsilon(4S)$	
ullet $ullet$ We do not use	the followin	g data for average	s, fits	, limits,	etc. • • •		
$< 5.6 \times 10^{-3}$	90	BARATE	980	ALEP	$e^+e^- \rightarrow$	Ζ	

 $\Gamma(D^{(*)0}\overline{D}^{(*)0})/\Gamma_{\text{total}}$ Γ_{56}/Γ < 0.027 98Q ALEP

$\Gamma(J/\psi(1S)K^0)/\Gamma_{\text{total}}$ Γ_{57}/Γ

Created: 6/20/2000 14:10

$VALUE$ (units 10^{-4})	CL% EVTS	DOCUMENT ID	TECN	COMMENT
8.9±1.2 OUR AVEF	RAGE			
$8.5^{+1.4}_{-1.2}\!\pm\!0.6$		¹⁵⁹ JESSOP	97 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$11.5\!\pm\!2.3\!\pm\!1.7$		¹⁶⁰ ABE		$p\overline{p}$ at 1.8 TeV
$7.0\!\pm\!4.1\!\pm\!0.1$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$9.3\pm7.3\pm0.2$	2	¹⁶² ALBRECHT	90J ARG	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$7.5\!\pm\!2.4\!\pm\!0.8$		10	¹⁶¹ ALAM	94	CLE2	Sup. by JESSOP 97
< 50	90		ALAM	86	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹⁵⁹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹⁶⁰ ABE 96H assumes that B($B^+ \rightarrow J/\psi K^+$) = (1.02 ± 0.14) × 10⁻³.

¹⁶¹ BORTOLETTO 92 reports $6\pm3\pm2$ for B $(J/\psi(1S)
ightarrow e^+e^-)=0.069\pm0.009$. We rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-$) = (5.93 \pm 0.10) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{162}}$ ALBRECHT 90J reports $8\pm 6\pm 2$ for B $(J/\psi(1S) \rightarrow e^+e^-)=0.069\pm 0.009$. We rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-$) = (5.93 \pm 0.10) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

```
\Gamma(J/\psi(1S)K^+\pi^-)/\Gamma_{\text{total}}
```

 Γ_{58}/Γ

 VALUE
 CL%
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 0.0012 ± 0.0006 OUR NEW AVERAGE
 $[0.0011 \pm 0.0006 \text{ OUR } 1998 \text{ AVERAGE}]$

 0.00116 $\pm 0.00056 \pm 0.00002$ 163 BORTOLETTO92 CLEO
 $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 0.0013	90		¹⁶⁴ ALBRECHT	87D A	RG	$e^+e^- \rightarrow \gamma(4S)$
< 0.0063	90	2	GILES	84 C	LEO	$e^+e^- \rightarrow \gamma(4S)$

¹⁶³ BORTOLETTO 92 reports $0.0010 \pm 0.0004 \pm 0.0003$ for $B(J/\psi(1S) \rightarrow e^+e^-) = 0.069 \pm 0.009$. We rescale to our best value $B(J/\psi(1S) \rightarrow e^+e^-) = (5.93 \pm 0.10) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 164 ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. $K\pi$ system is specifically selected as nonresonant.

$\Gamma(J/\psi(1S)K^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{59}/Γ

$(3/\psi(13)/(332))/(32)$	totai			. 59/ .
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.00150±0.00017 OUR NEV	W AVE		0.00018 OUR	1998 AVERAGE]
$0.00174 \pm 0.00020 \pm 0.00018$		¹⁶⁵ ABE	980 CDF	<i>p</i> p 1.8 TeV
$0.00132 \pm 0.00017 \pm 0.00017$		¹⁶⁶ JESSOP		$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.00128 \pm 0.00066 \pm 0.00002$		¹⁶⁷ BORTOLETTO	O92 CLEO	$e^+e^- ightarrow \Upsilon(4S)$
$0.00128 \pm 0.00060 \pm 0.00002$	6	¹⁶⁸ ALBRECHT	90J ARG	$e^+e^- ightarrow \Upsilon(4S)$
$0.0041\ \pm0.0018\ \pm0.0001$	5	¹⁶⁹ BEBEK	87 CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the following	lowing	data for averages, fit	s, limits, etc.	• • •
$0.00136 \pm 0.00027 \pm 0.00022$		¹⁷⁰ ABE	96н CDF	Sup. by ABE 980
$0.00169 \pm 0.00031 \pm 0.00018$	29	¹⁷¹ ALAM	94 CLE2	Sup. by JESSOP 97
		¹⁷² ALBRECHT	94G ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.0040\ \pm0.0030$		¹⁷³ ALBAJAR	91E UA1	$E_{cm}^{p\overline{p}} = 630 \; GeV$
0.0033 ± 0.0018	5	¹⁷⁴ ALBRECHT	87D ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.0041\ \pm0.0018$	5	¹⁷⁵ ALAM	86 CLEO	Repl. by BEBEK 87
165 ABE 980 reports [B(B^0				
0.14 ± 0.15 . We multiply				
Our first error is their exp	perimen	t's error and our seco	nd error is the	e systematic error from

using our best value. 166 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹⁶⁷ BORTOLETTO 92 reports $0.0011 \pm 0.0005 \pm 0.0003$ for $B(J/\psi(1S) \rightarrow e^+e^-) = 0.069 \pm 0.009$. We rescale to our best value $B(J/\psi(1S) \rightarrow e^+e^-) = (5.93 \pm 0.10) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹⁶⁸ ALBRECHT 90J reports $0.0011 \pm 0.0005 \pm 0.0002$ for B $(J/\psi(1S) \rightarrow e^+e^-) = 0.069 \pm 0.009$. We rescale to our best value B $(J/\psi(1S) \rightarrow e^+e^-) = (5.93 \pm 0.10) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹⁶⁹ BEBEK 87 reports $0.0035\pm0.0016\pm0.0003$ for B $(J/\psi(1S)\to e^+e^-)=0.069\pm0.009$. We rescale to our best value B $(J/\psi(1S)\to e^+e^-)=(5.93\pm0.10)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Updated in BORTOLETTO 92 to use the same assumptions.

¹⁷⁰ ABE 96H assumes that B($B^+ \to J/\psi K^+$) = (1.02 ± 0.14) × 10⁻³.

¹⁷¹ The neutral and charged B events together are predominantly longitudinally polarized, $\Gamma_L/\Gamma=0.080\pm0.08\pm0.05$. This can be compared with a prediction using HQET, 0.73 (KRAMER 92). This polarization indicates that the $B\to \psi K^*$ decay is dominated by the CP=-1 CP eigenstate. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 172 ALBRECHT 94G measures the polarization in the vector-vector decay to be predominantly longitudinal, $\Gamma_T/\Gamma=0.03\pm0.16\pm0.15$ making the neutral decay a $\it CP$ eigenstate when the $\it K^{*0}$ decays through $\it K^0_S\,\pi^0$.

 173 ALBAJAR 91E assumes B_d^0 production fraction of 36%.

¹⁷⁴ ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. Superseded by ALBRECHT 90J.

¹⁷⁵ ALAM 86 assumes B^{\pm}/B^0 ratio is 60/40. The observation of the decay $B^+ \rightarrow J/\psi K^*(892)^+$ (HAAS 85) has been retracted in this paper.

$\Gamma(J/\psi(1S)K^*(892)^0)/\Gamma(J/\psi(1S)K^0)$

 Γ_{59}/Γ_{57}

	, ,			
<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT	
1.39±0.36±0.10	ABE	96Q CDF	pp	

$\Gamma(J/\psi(1S)\pi^0)/\Gamma_{\text{total}}$

 Γ_{60}/Γ

<u>VALUE</u>	CL%	<u>EVTS</u>	DOCUMENT I	D	TECN	<u>COMMENT</u>	
$< 5.8 \times 10^{-5}$	90		BISHAI	96	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $< 3.2 \times 10^{-4}$ 90 176 ACCIARRI 97C L3

<6.9 \times 10 $^{-3}$ 90 1 177 ALEXANDER 95 CLE2 Sup. by BISHAI 96

 176 ACCIARRI 97C assumes B^0 production fraction (39.5 \pm 4.0%) and B_{s} (12.0 \pm 3.0%).

¹⁷⁷ Assumes equal production of B^+B^- and $B^0\overline{B}^0$ on $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)\eta)/\Gamma_{\text{total}}$

 Γ_{61}/Γ

VALUE	CL%	DOCUMENT ID	TECN
$<1.2 \times 10^{-3}$	90	178 ACCIARRI	97C L3

 178 ACCIARRI 97C assumes B^0 production fraction (39.5 \pm 4.0%) and B_s (12.0 \pm 3.0%).

$\Gamma(J/\psi(1S)\rho^0)/\Gamma_{\mathsf{total}}$

 Γ_{62}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<2.5 × 10 ⁻⁴	90	BISHAI	96	CLE2	$e^+e^- ightarrow \Upsilon(4S)$

$\Gamma(J/\psi(1S)\omega)/\Gamma_{\text{total}}$

Γ₆₃/Γ

- (- / + (/ -) / - LOLAI						- 05/ -
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<2.7 × 10 ⁻⁴	90	BISHAI	96	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

$\Gamma(\psi(2S)K^0)/\Gamma_{\text{total}}$

 Γ_{64}/Γ

Created: 6/20/2000 14:10

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.0008	90	179 ALAM	94	CLE2	$e^+e^- \rightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.0015 90 179 BORTOLETTO92 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ <0.0028 90 179 ALBRECHT 90J ARG $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^{179}}$ Assumes equal production of B^+ and B^0 at the \varUpsilon (4S).

$\Gamma(\psi(2S)K^+\pi^-)/$	$\Gamma_{ ext{total}}$					Γ ₆₅ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT	
<0.001	90	¹⁸⁰ ALBRECHT	90J	ARG	$e^+e^- ightarrow$	$\Upsilon(4S)$
$^{180}\mathrm{Assumes}$ equal pr	oduction o	f B^+ and B^0 at th	ie $\Upsilon(4.$	S).		
$\Gamma(\psi(2S) K^*(892)^0$	$^{0})/\Gamma_{\text{total}}$					Γ ₆₆ /Γ
VALUE		DOCUMENT	ID	TECN	<u>COMMENT</u>	-
(9.3 ± 2.3)		× 10 ⁻⁴ OUR NE 1998 AVEF		RAGE	$[0.0014 \pm 0]$	0.0009 OUR
0.00090 ± 0.00022	± 0.00009	¹⁸¹ ABE	98	o CDF	р р 1.8 Те	eV
$0.0014\ \pm0.0008$	± 0.0004	¹⁸² BORTOLE	TTO92	CLE	O e^+e^-	$\Upsilon(4S)$
ullet $ullet$ We do not use	the following	ng data for average	es, fits,	limits,	etc. • • •	
< 0.0019	90	182 ALAM	94	CLE	$e^{+}e^{-} =$	$\Upsilon(4S)$
< 0.0023	90	¹⁸² ALBRECH	T 90)J ARG	e^+e^-	$\Upsilon(4S)$
¹⁸¹ ABE 980 reports	$IB(B^0 \rightarrow$	$\psi(2S) K^*(892)^0$)]/[B(<i>E</i>	3+ →	$J/\psi(1S)K^{+}$	-)1 =0.908 +
		our best value $B(B)$				
Our first error is t	heir experir	nent's error and ou				
using our best va			22/-	->		
¹⁸² Assumes equal pr	oduction o	f B^{+} and B^{0} at th	ie $T(4.$	5).		
$\Gamma(\chi_{c1}(1P)K^0)/\Gamma_1$	total					Γ ₆₇ /Γ
*	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.0027	90				$e^+e^- \rightarrow$	
						,
¹⁸³ BORTOLETTO 9	92 assumes	equal production of	of B	and B°	at the 1 (45	·).
$\Gamma(\chi_{c1}(1P)K^*(892))$	2) ⁰)/ _{Ftot}	اد				Γ ₆₈ /Γ
VALUE	CL%	<u>DOCUMENT ID</u>		TECN	COMMENT	307
<0.0021	90				$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹⁸⁴ BORTOLETTO 9	02 assumas					• •
	72 assumes	equal production c	ט וט	and D	at the 7 (43	,).
$\Gamma(K^+\pi^-)/\Gamma_{\text{total}}$						Г ₆₉ /Г
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
1.5 ^{+0.5} ±0.14	<u> </u>	CODANG	00	CLEO	+ -	20(4.6)
=0.4 = 0.1		GODANG			$e^+e^- \rightarrow$	1 (45)
• • • We do not use	the followi	ng data for average	es, fits,	limits,	etc. • • •	
$2.4^{+1.7}_{-1.1}\pm0.2$		¹⁸⁵ ADAM	96 D	DLPH	$e^+e^- ightarrow $	Z
< 1.7	90	ASNER	96	CLF2	Sup. by AD	AM 96D
< 3.0	90	¹⁸⁶ BUSKULIC			$e^+e^- \rightarrow$	
< 9	90	¹⁸⁷ ABREU	95N	DLPH	Sup. by AD	- AM 96D
< 8.1	90	¹⁸⁸ AKERS			$e^+e^- \rightarrow$	
< 2.6	90	¹⁸⁹ BATTLE			$e^+e^- \rightarrow$	
<18	90	ALBRECHT	91 B	ARG	$e^+e^- ightarrow$	$\Upsilon(4S)$
< 9	90	¹⁹⁰ AVERY	89 B	CLEO	$e^+e^- ightarrow$	$\Upsilon(4S)$
<32	90	AVERY	87	CLEO	$e^+e^- ightarrow$	$\Upsilon(4S)$
$^{185}\mathrm{ADAM}$ 96D assur	$mes f_{-0} =$	$f_{-} = 0.39$ and t	f _D =	0 12 (ontributions	from B^0 and
B _a decays cannot	be separa	B^{-} = 0.35 and B^{-} ted. Limits are given	$_{S}^{-}$	he wei	ghted average	of the decay
rates for the two	neutral B i	nesons.				
¹⁸⁶ BUSKULIC 96V a	ssumes PD	G 96 production fr	actions	s for B^0	J , B^+ , B_{S} , b	baryons.

HTTP://PDG.LBL.GOV Page 29 Created: 6/20/2000 14:10

```
187 Assumes a B^0, B^- production fraction of 0.39 and a B_s production fraction of 0.12. Contributions from B^0 and B_s^0 decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons.

188 Assumes B(Z \to b \overline{b}) = 0.217 and B_d^0 (B_s^0) fraction 39.5% (12%).

189 BATTLE 93 assumes equal production of B^0 \overline{B}^0 and B^+ B^- at \Upsilon(4S).

190 Assumes the \Upsilon(4S) decays 43% to B^0 \overline{B}^0.
```

$\Gamma(K^0\pi^0)/\Gamma_{ m total}$						Γ ₇₀ /Γ
VALUE	CL%	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
$<4.1 \times 10^{-5}$	90	GODANG	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
ullet $ullet$ We do not use the	following d	ata for averages	, fits	, limits,	etc. • • •	
$<4.0 \times 10^{-5}$	90	ASNER	96	CLE2	Rep. by G	ODANG 98
$\Gamma(\eta' K^0)/\Gamma_{\text{total}}$		DOCUMENT ID		TECN	COMMENT	Γ ₇₁ /Γ
$(4.7^{+2.7}_{-2.0}\pm 0.9)\times 10^{-5}$					$e^+e^- \rightarrow$	Υ(4S)
$\Gamma(\eta' K^*(892)^0)/\Gamma_{\text{tota}}$	ı					Γ ₇₂ /Γ
VALUE <3.9 × 10⁻⁵	CL%	DOCUMENT ID				
$<3.9 \times 10^{-5}$	90	BEHRENS	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(\eta K^*(892)^0)/\Gamma_{total}$	<u>CL%_</u>	DOCUMENT ID		TECN	COMMENT	Γ ₇₃ /Γ
<3.0 × 10 ⁻⁵	90	BEHRENS			$e^+e^- \rightarrow$	$\Upsilon(45)$
$\Gamma(\eta K^0)/\Gamma_{\text{total}}$	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	Γ ₇₄ /Γ
<3.3 × 10 ⁻⁵	90	BEHRENS	98	CLE2	e^+e^-	$\Upsilon(4S)$
$\Gamma(\omega K^0)/\Gamma_{\text{total}}$	C1 9/	DOCUMENT ID		TECN		Γ ₇₅ /Γ
<5.7 × 10 ⁻⁵		BERGFELD				
191 Assumes equal produ						
$\Gamma(\omega K^*(892)^0)/\Gamma_{\text{total}}$	l			ŕ		Γ ₇₆ /Γ
<i>VALUE</i> <2.3 × 10 ^{−5}	90 192	BERGFELD	98	CLE2		
¹⁹² Assumes equal produ						
$\left[\Gamma(K^{+}\pi^{-}) + \Gamma(\pi^{+}\pi^{-})\right]$	r ⁻)]/ Γ tota	nl	D	TECI		- ₆₉ +Γ ₁₀₇)/Γ
<u>VALUE</u> (1.9±0.6) × 10 ^{−5}	OUR AVER	<u>DOCUMENT I</u> AGE	<i>υ</i>	ILCI	<u>COMMEN</u>	
$(2.8^{+1.5}_{-1.0}\pm 2.0)\times 10^{-5}$			9	6D DLP	H e ⁺ e ⁻	\rightarrow Z
$(1.8^{+0.6}_{-0.5}^{+0.3}_{-0.4}) \times 10^{-5}$	17.2	ASNER	9	6 CLE	2 e ⁺ e ⁻	$ ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	following d	ata for averages	, fits	, limits,	etc. • • •	

$$(2.4^{+0.8}_{-0.7}\pm 0.2) \times 10^{-5}$$
 194 BATTLE 93 CLE2 $e^+e^- o au(4S)$

 193 ADAM 96D assumes $f_{B^0}=f_{B^-}=0.39$ and $f_{B_s}=0.12$. Contributions from B^0 and B_s decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons.

¹⁹⁴BATTLE 93 assumes equal production of $B^0\overline{B}^0$ and B^+B^- at $\Upsilon(4S)$.

$\Gamma(K^+K^-)/\Gamma_{\text{total}}$					Γ ₇₇ /Γ
VALUE	CL%	DOCUMENT ID	TE	CN COMMENT	
$<4.3 \times 10^{-6}$	90	GODANG	98 CL	E2 $e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use th	e followi	ng data for averages	, fits, lin	nits, etc. • • •	
$< 4.6 \times 10^{-5}$		¹⁹⁵ ADAM	96D DL	.PH $e^+e^ ightarrow$	Z
$< 0.4 \times 10^{-5}$	90	ASNER	96 CL	E2 Repl. by	GODANG 98
$< 1.8 \times 10^{-5}$	90	¹⁹⁶ BUSKULIC	96∨ AL	EP $e^+e^ \rightarrow$	Z
$< 1.2 \times 10^{-4}$	90	¹⁹⁷ ABREU	95N DL	PH Sup. by A	ADAM 96D
$< 0.7 \times 10^{-5}$	90	¹⁹⁸ BATTLE	93 CL	E2 $e^+e^- \rightarrow$	$\Upsilon(4S)$
195 ADAM 96D assumes	$f_{R0} =$	$f_{R^{-}} = 0.39 \text{ and } f_{E}$	$g_a = 0.13$	2. Contribution	ns from B^0 and

 B_s decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons. 196 BUSKULIC 96V assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons.

 197 Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. Contributions from B^0 and B^0_s decays cannot be separated. Limits are given for the weighted average of the decay rates for the two neutral B mesons. 198 BATTLE 93 assumes equal production of $B^0 \overline{B}{}^0$ and $B^+ B^-$ at $\Upsilon(4S)$.

$\Gamma(K^0\overline{K}^0)/\Gamma_{ ext{total}}$						Γ ₇₈ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<1.7 \times 10^{-5}$	90	GODANG	98	CLE2	$e^+e^- \to$	$\Upsilon(4S)$
$\Gamma(K^+ ho^-)/\Gamma_{ m total}$						Γ ₇₉ /Γ
VALUE	CL%	DOCUMENT ID		TECN	<u>COMMENT</u>	
$<3.5 \times 10^{-5}$	90	ASNER	96	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(K^0\pi^+\pi^-)/\Gamma_{\text{total}}$						Γ ₈₀ /Γ
	CL%	DOCUMENT ID		TECN	<u>COMMENT</u>	
• • • We do not use the	following o	lata for averages	s, fits	, limits,	etc. • • •	
$< 4.4 \times 10^{-4}$	90	ALBRECHT	91E	ARG	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$\Gamma(K^0 ho^0)/\Gamma_{ m total}$						Γ ₈₁ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 3.9 \times 10^{-5}$	90	ASNER	96	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following o	lata for averages	s, fits	, limits,	etc. • • •	, ,
$< 3.2 \times 10^{-4}$	90	ALBRECHT	91 R	ARG	e+e-	$\Upsilon(45)$
$<5.0 \times 10^{-4}$		AVERY				
<0.064		AVERY				
• • • • • • • • • • • • • • • • • • • •						
199 AVERY 89B reports rescale to 50%.	$<$ 5.8 \times 10) ¬ assuming t	he 7	(45) de	cays 43% t	o Bo Bo. We
200 AVERY 87 reports <	0.08 assur	ming the $\Upsilon(45)$	deca	avs 40%	to $B^0 \overline{B}^0$	We rescale to
		(13)	4000	-,/0		

50%.

$\Gamma(\kappa^0 f_0(980))/\Gamma_{\text{total}}$						Γ ₈₂ /Γ
VALUE		DOCUMENT ID		TECN	<u>COMMENT</u>	
$< 3.6 \times 10^{-4}$	90 20	¹ AVERY	89 B	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
201 AVERY 89B reports rescale to 50%.	< 4.2 × 1	0^{-4} assuming t	the γ	(4 <i>S</i>) de	ecays 43% t	o $B^0 \overline{B}{}^0$. We
$\Gamma(K^*(892)^+\pi^-)/\Gamma_{to}$						Γ ₈₃ /Γ
		DOCUMENT ID				
$< 7.2 \times 10^{-5}$					$e^+e^- \rightarrow$	` '
<3.8 × 10 ⁻⁴		² AVERY			$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the						
$<6.2 \times 10^{-4}$	90	ALBRECHT	91 B	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$< 5.6 \times 10^{-4}$	90 20	³ AVERY	87	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
202 AVERY 89B reports $<4.4\times10^{-4}$ assuming the $\varUpsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%.						
$\Gamma(K^*(892)^0\pi^0)/\Gamma_{\text{tot.}}$		DOCUMENT ID		TECN	COMMENT	Γ ₈₄ /Γ
<2.8 × 10 ⁻⁵	90	•			$e^+e^- \rightarrow$	
<2.0 X 10	90	ASNER	90	CLEZ	e · e →	7 (43)
$\Gamma(K_2^*(1430)^+\pi^-)/\Gamma_1$ VALUE		DOCUMENT ID		TECN	<u>COMMENT</u>	Г ₈₅ /Г
<2.6 × 10 ⁻³	90	ALBRECHT				$\Upsilon(4S)$
$\Gamma(K^0K^+K^-)/\Gamma_{\text{total}}$	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	Γ ₈₆ /Γ
<1.3 × 10 ⁻³	90	ALBRECHT	91E		·	
$\Gamma(K^0\phi)/\Gamma_{\text{total}}$	G. 0.					Γ ₈₇ /Γ
		DOCUMENT ID				
$<3.1 \times 10^{-5} (CL = 90\%)$	-	•	,		998 BEST L	-IMI I J
$<3.1\times10^{-5}$		⁴ BERGFELD		CLE2		
• • • We do not use the	tollowing (data for average				
$< 8.8 \times 10^{-5}$	90	ASNER			$e^+e^- \rightarrow$	
$< 7.2 \times 10^{-4}$	90	ALBRECHT	91 B	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$<4.2 \times 10^{-4}$		⁵ AVERY			$e^+e^- \rightarrow$	
$<1.0 \times 10^{-3}$		⁶ AVERY			$e^+e^- \rightarrow$	$\Upsilon(4S)$
204 Assumes equal produ 205 AVERY 89B reports rescale to 50%. 206 AVERY 87 reports < to 50%.	< 4.9 × 1	0^{-4} assuming t	the γ	(4 <i>S</i>) de		

$\Gamma(K^-\pi^+\pi^+\pi^-)/\Gamma_{tc}$	otal						Γ ₈₈ /Γ
			DOCUMENT ID		TECN	COMMENT	
$< 2.3 \times 10^{-4}$	90	207	ADAM	96 D	DLPH	$e^{+}e^{-}\rightarrow$	Z
● ● We do not use the	followi	ng d	ata for averages	s, fits	, limits,	etc. • • •	
$< 2.1 \times 10^{-4}$	90	208	ABREU	95N	DLPH	Sup. by Al	DAM 96D
$B_{\rm S}$ decays cannot be rates for the two neural Assumes a $B_{\rm S}^0$. Contributions from $B_{\rm S}^0$ weighted average of	separat tral <i>B</i> r product 3 ⁰ and	ted. neso tion B_s^0	Limits are giver ns. fraction of 0.39 decays cannot	n for and be se	the weig $_{s}$ $_{s}$ $_{p}$	ghted averag roduction fra . Limits are	ge of the decay action of 0.12.
$\Gamma(K^*(892)^0\pi^+\pi^-)/$	$\Gamma_{ m total}$						Γ ₈₉ /Γ
VALUE			DOCUMENT ID		TECN	COMMENT	
$<1.4 \times 10^{-3}$	90		ALBRECHT	91E	ARG	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$\Gamma(K^*(892)^0 ho^0)/\Gamma_{ m tota}$	al CL%		DOCUMENT ID		TECN	COMMENT	Γ ₉₀ /Γ
<4.6 × 10 ⁻⁴			ALBRECHT				
• • • We do not use the							7 (43)
$< 5.8 \times 10^{-4}$	90	209	AVERY	89 B	CLEO	$e^+e^- ightarrow$	$\Upsilon(4S)$
$< 9.6 \times 10^{-4}$	90	210	AVERY	87	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
209 AVERY 89B reports rescale to 50%. 210 AVERY 87 reports < to 50%.							
$\Gamma(K^*(892)^0 f_0(980))$	/Γ _{total}						Γ ₉₁ /Γ
VALUE	CL%		DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
$< 1.7 \times 10^{-4}$	90	211	AVERY	89 B	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
211 AVERY 89B reports rescale to 50%.	< 2.0	× 10	$^{-4}$ assuming t	he γ	(4 <i>S</i>) de	ecays 43% t	o <i>B⁰ $\overline{B}{}^0$</i> . We
$\Gamma(K_1(1400)^+\pi^-)/\Gamma_1$	otal						Γ ₉₂ /Γ
	CL%		DOCUMENT ID		TECN	COMMENT	
<u>VALUE</u> <1.1 × 10 ^{−3}	90		ALBRECHT	91 B	ARG	e^+e^-	$\Upsilon(4S)$
$\Gamma(K^-a_1(1260)^+)/\Gamma_1$	otal						Γ ₉₃ /Γ
	CL%		DOCUMENT ID		TECN	COMMENT	
<u>VALUE</u> <2.3 × 10 ^{−4}	90	212	DOCUMENT ID ADAM	96 D	DLPH	$e^{+}e^{-}\rightarrow$	Z
• • • We do not use the	followi	ng d	ata for averages	s, fits	, limits,	etc. • • •	
$< 3.9 \times 10^{-4}$	90	213	ABREU	95N	DLPH	Sup. by Al	DAM 96D
212 ADAM 96D assumes B_s decays cannot be rates for the two neu	separat	ted.	Limits are giver	$B_s = 1$	0.12. (Contributions ghted averag	s from B^0 and ge of the decay
213 Assumes a B ⁰ , B ⁻ Contributions from B weighted average of	product	ion	fraction of 0.39	and be se neuti	a $B_{\mathcal{S}}$ peparated \mathcal{S}	roduction fra . Limits are esons.	action of 0.12.

$\Gamma(K^*(892)^0K^+K^-)$	•					Γ ₉₄ /Γ
<u>VALUE</u>	<u>CL%</u>	DOCUMENT I	,	<u>TECN</u>		
<6.1 × 10 ⁻⁴	90	ALBRECHT	91E	ARG	e^+e^-	$ ightarrow \ \varUpsilon(4S)$
$\Gamma(K^*(892)^0\phi)/\Gamma_{\text{tot}}$						Γ ₉₅ /Γ
<u>VALUE</u>		DOCUMENT I				
$<2.1 \times 10^{-5} \text{ (CL} = 90)$					998 BES	T LIMIT]
<2.1 × 10 ⁻⁵ • • • We do not use the		⁴ BERGFELD data for averag		CLE2 , limits,	etc. • •	•
$< 4.3 \times 10^{-5}$	90	ASNER	96	CLE2	e^+e^-	$ ightarrow ~ \varUpsilon(4S)$
$< 3.2 \times 10^{-4}$		ALBRECHT	91 B	ARG	e^+e^-	$\rightarrow \Upsilon(4S)$
$< 3.8 \times 10^{-4}$	90 21	⁵ AVERY	89 B	CLEO	e^+e^-	$\rightarrow \gamma(4S)$
$< 3.8 \times 10^{-4}$	90 21	⁶ AVERY	87	CLEO	e^+e^-	$\rightarrow \Upsilon(4S)$
214 Assumes equal prod 215 AVERY 89B reports 216 AVERY 87 reports < to 50%.	s < 4.4 imes 1	0^{-4} assuming	the γ	(4 <i>S</i>) de	ecays 43% 40% to <i>B</i>	% to $B^0\overline{B}^0$. We $B^0\overline{B}^0$. We rescale
$\Gamma\big(K_1(1400)^0\rho^0\big)/\Gamma_{\rm t}$						Γ ₉₆ /Γ
	<u>CL%</u>	DOCUMENT I	,			
$<3.0 \times 10^{-3}$	90	ALBRECHT	91 B	ARG	e^+e^-	\rightarrow $\Upsilon(4S)$
$\Gamma(K_1(1400)^0\phi)/\Gamma_{\text{to}}$		DOCUMENT	5	TECN	COMMATA	Γ ₉₇ /Γ
VALUE	<u>CL%</u>	DOCUMENT I	,	<u>TECN</u>		
$< 5.0 \times 10^{-3}$	90	ALBRECHT	91 B	ARG	e	$ ightarrow \ \varUpsilon(4S)$
$\Gamma(K_2^*(1430)^0\rho^0)/\Gamma_1$		DOCUMENT I	D	TECN		Г ₉₈ /Г
<u>VALUE</u> <1.1 × 10 ^{−3}	<u>CL%</u>	DOCUMENT I			<u>COMMEN</u>	
<1.1 × 10	90	ALBRECHT	91 B	ARG	e ' e -	$ ightarrow ~ \varUpsilon(4S)$
$\Gamma(K_2^*(1430)^0\phi)/\Gamma_{to}$	otal 	DOCUMENT I	n	TECN	COMMEN	Γ₉₉/Γ
<1.4 × 10 ⁻³	90	ALBRECHT		ARG		$\rightarrow \Upsilon(4S)$
<1.4 × 10	90	ALBINECITI	910	AING	е е	$\rightarrow I(43)$
$\Gamma(K^*(892)^0\gamma)/\Gamma_{\text{tot}}$						Γ ₁₀₀ /Γ
VALUE (units 10^{-5})	CL% E		UMENT		TECN	COMMENT
4.0±1.7±0.8		8 ²¹⁷ AMI		93	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the	ne following		_	, limits,	etc. • •	
< 21	90	²¹⁸ ADA	M	96 D	DLPH	$e^+e^- \rightarrow Z$
< 42	90	ALB	RECH	Γ 89G	ARG	$e^+e^- ightarrow \Upsilon(4S)$
< 24	90	²¹⁹ AVE	RY	89 B	CLEO	$e^+e^- \rightarrow \gamma(4S)$
<210	90	AVE	RY	87	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
017						. ()

 $^{^{217}}$ AMMAR 93 observed 6.6 \pm 2.8 events above background. 218 ADAM 96D assumes $f_{B^0}=f_{B^-}=0.39$ and $f_{B_S}=0.12.$ 219 AVERY 89B reports $<2.8\times10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0\,\overline{B}^0$. We rescale to 50%.

$\Gamma(K_1(1270)^0\gamma)$		DOCUMENT ID	TECN	Γ ₁₀₁ /Γ
<i>VALUE</i> <0.0070	90			$e^+e^- ightarrow \gamma(4S)$
				` '
rescale to 50%.	9G reports <	0.0078 assuming t	ne <i>I</i> (45) de	ecays 45% to $B^0\overline{B}{}^0$. We
$\Gamma(K_1(1400)^0\gamma)$	/Γ _{total}			Γ ₁₀₂ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
< 0.0043	90	²²¹ ALBRECHT	89G ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
²²¹ ALBRECHT 89 rescale to 50%.				ecays 45% to $B^0 \overline{B}{}^0$. We
$\Gamma(K_2^*(1430)^0\gamma)$				Γ ₁₀₃ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
$<4.0 \times 10^{-4}$	90	²²² ALBRECHT	89G ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
²²² ALBRECHT 89 rescale to 50%.	9G reports < 4	$1.4 imes10^{-4}$ assuming	g the $\Upsilon(4S)$	decays 45% to $B^0 \overline{B}{}^0$. We
$\Gamma(K^*(1680)^0\gamma)$				Γ ₁₀₄ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		
<0.0020	90	²²³ ALBRECHT	89G ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
²²³ ALBRECHT 89 rescale to 50%.		0.0022 assuming t	he $\varUpsilon(4S)$ de	ecays 45% to $B^0 \overline{B}{}^0$. We
$\Gamma\big(K_3^*(1780)^0\gamma\big)$	$/\Gamma_{ ext{total}}$			Γ ₁₀₅ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
<0.010	90			$e^+e^- \rightarrow \Upsilon(4S)$
²²⁴ ALBRECHT 89 to 50%.	G reports < 0	.011 assuming the γ	$\mathcal{C}(4S)$ decays	45% to $B^0\overline{B}^0$. We rescale
$\Gamma(K_4^*(2045)^0\gamma)$				Γ ₁₀₆ /Γ
		DOCUMENT ID		
<0.0043	90			$e^+e^- \rightarrow \Upsilon(4S)$
rescale to 50%.		0.0048 assuming t	he $\varUpsilon(4S)$ de	ecays 45% to $B^0\overline{B}{}^0$. We
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{tota}}$	I			Γ ₁₀₇ /Γ
VALUE	CL% EVTS	DOCUMENT ID	TECN	COMMENT
$< 1.5 \times 10^{-5}$	90	GODANG	98 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
	ise the followi	ng data for average		
	90	²²⁶ ADAM	96D DLPH	$e^+e^- ightarrow Z$
•	90	ASNER	96 CLE2	Repl. by GODANG 98
	90	²²⁷ BUSKULIC		$e^+e^- ightarrow~Z$
	90	²²⁸ ABREU		Sup. by ADAM 96D
	90	²²⁹ AKERS		$e^+e^- \rightarrow Z$
	90	²³⁰ BATTLE		$e^+e^- ightarrow ~ \varUpsilon(4S)$
	90	²³⁰ ALBRECHT	90B ARG	$e^+e^- \rightarrow \Upsilon(4S)$
	90	231 BORTOLETT		$e^+e^- \rightarrow \Upsilon(4S)$
4	90	²³¹ BEBEK		$e^+e^- \rightarrow \gamma(4S)$
$< 5 \times 10^{-4}$	90 4	GILES	84 CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
//	5. 66.	_	_	

Page 35

Created: 6/20/2000 14:10

HTTP://PDG.LBL.GOV

```
^{226}\,\mathrm{ADAM} 96D assumes \mathit{f}_{B^0}=\mathit{f}_{B^-}=0.39 and \mathit{f}_{B_{\mathrm{S}}}=0.12.
```

$\Gamma(\pi^0\pi^0)/\Gamma_{ m total}$						Γ_{108}/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 9.3 \times 10^{-6}$	90	GODANG	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	e following	data for average	s, fits	, limits,	etc. • • •	
$< 0.91 \times 10^{-5}$	90	ASNER			Repl. by G	
$< 6.0 \times 10^{-5}$	90 23	² ACCIARRI	95H	L3	$e^+e^- \rightarrow$	Z
²³² ACCIARRI 95H assur	$mes f_{B^0} =$	39.5 ± 4.0 and	$f_{B_s} =$	= 12.0 ±	3.0%.	

$\Gamma(\eta\pi^0)/\Gamma_{ m total}$						Γ ₁₀₉ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<8 × 10 ⁻⁶	90	BEHRENS	98	CLE2	$e^+e^- ightarrow$	$\Upsilon(4S)$
• • • We do not use t	the follow	ing data for averages	s, fits	, limits,	etc. • • •	
$< 2.5 \times 10^{-4}$	90				$e^+e^- \rightarrow$	
$< 1.8 \times 10^{-3}$	90	²³⁴ ALBRECHT	90 B	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
²³³ ACCIARRI 95H ass	sumes f_{B^0}	$_0=39.5\pm4.0$ and	$f_{B_s} =$	= 12.0 ±	3.0%.	

²³⁴ ALBRECHT 90B limit assumes equal production of $B^0 \overline{B}{}^0$ and $B^+ B^-$ at $\Upsilon(4S)$.

$\Gamma(\eta\eta)/\Gamma_{total}$						Γ ₁₁₀ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 1.8 \times 10^{-5}$	90	BEHRENS	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use th	e following	data for average	s, fits	, limits,	etc. • • •	
$< 4.1 \times 10^{-4}$	90 23	³⁵ ACCIARRI	95н	L3	$e^+e^- \rightarrow$	Z
²³⁵ ACCIARRI 95H assu	$mes f_{B^0} =$	39.5 ± 4.0 and	$f_{B_c} =$	= 12.0 ±	3.0%.	

$\Gamma(\eta'\pi^0)/\Gamma_{ m total}$						Γ_{111}/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<1.1 \times 10^{-5}$	90	BEHRENS	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(\eta'\eta')/\Gamma_{total}$						Γ ₁₁₂ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	_
$<4.7 \times 10^{-5}$	90	BEHRENS	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(\eta'\eta)/\Gamma_{ m total}$						Γ ₁₁₃ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	_
<2.7 × 10 ⁻⁵	90	BEHRENS	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma ig(\eta' ho^0 ig) / \Gamma_{total}$						Γ_{114}/Γ
VALUE	<u>CL%</u>	<u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>	
$<2.3\times10^{-5}$	90	BEHRENS	98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
HTTP://PDG.LBL.	GOV	Page 36		Crea	ited: 6/20	/2000 14:10

²²⁷ BUSKULIC 96V assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons.

 $^{^{228}\,\}mathrm{Assumes}$ a $B^0,\,B^-$ production fraction of 0.39 and a B_{s} production fraction of 0.12.

²²⁹ Assumes B($Z \rightarrow b\overline{b}$) = 0.217 and B_d^0 (B_s^0) fraction 39.5% (12%). 230 Assumes equal production of $B^0\overline{B}^0$ and B^+B^- at $\Upsilon(4S)$. 231 Paper assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%.

$\Gamma(\eta \rho^0)/\Gamma_{\text{total}}$	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT	Γ ₁₁₅ /Γ
<u>VALUE</u> <1.3 × 10 ^{−5}	90		BEHRENS				$\Upsilon(4S)$
$\Gamma(\omega\eta)/\Gamma_{ ext{total}}$							Γ ₁₁₆ /Γ
VALUE	CL%		DOCUMENT ID		TECN		_
$< 1.2 \times 10^{-5}$	90 2	236	BERGFELD	98	CLE2		I
²³⁶ Assumes equal produ	ction of E	3+	and B^0 at the	Υ (4	·S).		
$\Gamma(\omega\eta')/\Gamma_{ m total}$							Γ ₁₁₇ /Γ
<u>VALUE</u>	<u>CL%</u>		DOCUMENT ID		TECN		_
			BERGFELD				
²³⁷ Assumes equal produ	ction of E	3+	and B^0 at the	$\Upsilon(4$	·S).		I
$\Gamma(\omega ho^0)/\Gamma_{ m total}$							Γ ₁₁₈ /Γ
<u>VALUE</u>	<u>CL%</u>		DOCUMENT ID		TECN		_
4			BERGFELD				
²³⁸ Assumes equal produ	ction of E	3+	and B^0 at the	$\Upsilon(4$	·S).		I
$\Gamma(\omega\omega)/\Gamma_{ ext{total}}$							Γ ₁₁₉ /Γ
VALUE	<u>CL%</u>		DOCUMENT ID		TECN		_
			BERGFELD				
²³⁹ Assumes equal produ	ction of E	3+	and B^0 at the	$\Upsilon(4$	·S).		I
$\Gamma(\phi\pi^0)/\Gamma_{ m total}$							Γ_{120}/Γ
<u>VALUE</u>	<u>CL%</u>		DOCUMENT ID		TECN		_
•••			BERGFELD				
²⁴⁰ Assumes equal produ	ction of <i>E</i>	3+	and B^0 at the	$\Upsilon(4$	·S).		I
$\Gamma(\phi\eta)/\Gamma_{total}$							Γ_{121}/Γ
VALUE	CL%		DOCUMENT ID		TECN		_
$< 0.9 \times 10^{-5}$	90 2	241	BERGFELD	98	CLE2		I
²⁴¹ Assumes equal produ	ction of E	3+	and B^0 at the	$\Upsilon(4$	·S).		
$\Gamma(\phi\eta')/\Gamma_{total}$							Γ ₁₂₂ /Γ
VALUE	CL%		DOCUMENT ID BERGFELD		TECN		_
<i>VALUE</i> <3.1 × 10 ^{−5}	90 2	42	BERGFELD	98	CLE2		
²⁴² Assumes equal produ	ction of E	3+	and B^0 at the	$\Upsilon(4$	·S).		I
$\Gamma(\phi ho^0)/\Gamma_{ m total}$							Γ ₁₂₃ /Γ
<i>VALUE</i> <1.3 × 10 ^{−5}	<u>CL%</u>	142	DOCUMENT ID		TECN		
-			BERGFELD				
²⁴³ Assumes equal produ	ction of <i>E</i>	3+	and B^0 at the	$\Upsilon(4$	·S).		I

```
\Gamma(\phi\omega)/\Gamma_{\text{total}}
                                                                                                        \Gamma_{124}/\Gamma
                                          <sup>244</sup> BERGFELD
<sup>244</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\phi\phi)/\Gamma_{\text{total}}
                                                                                                        \Gamma_{125}/\Gamma
                                               DOCUMENT ID
                                                                      TECN COMMENT
VALUE
                                 CL%
 <1.2 \times 10^{-5} (CL = 90%) [<3.9 \times 10^{-5} (CL = 90%) OUR 1998 BEST LIMIT]
                                          <sup>245</sup> BERGFELD
 <1.2 \times 10^{-5}
                                90
• • We do not use the following data for averages, fits, limits, etc.
< 3.9 \times 10^{-5}
                                                                   96 CLE2 e^+e^- \rightarrow \Upsilon(4S)
                                               ASNER
<sup>245</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}
                                                                                                        \Gamma_{126}/\Gamma
VALUE
                                                                        TECN COMMENT
                                          <sup>246</sup> ALBRECHT
                                 90
                                                                   90B ARG
                                                                                   e^+e^- \rightarrow \Upsilon(4S)
<sup>246</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(\rho^0\pi^0)/\Gamma_{\text{total}}
VALUE
                                                                        TECN COMMENT
                                 90
                                               ASNER
                                                                   96 CLE2 e^+e^- \rightarrow \Upsilon(4S)
\bullet \bullet We do not use the following data for averages, fits, limits, etc.
<4.0 \times 10^{-4}
                                          <sup>247</sup> ALBRECHT
                                                                                   e^+e^- \rightarrow \Upsilon(4S)
                                 90
                                                                   90B ARG
<sup>247</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(\rho^{\mp}\pi^{\pm})/\Gamma_{\text{total}}
                                                                                                        \Gamma_{128}/\Gamma
VALUE
                                   <u>CL%</u>
                                                  DOCUMENT ID
                                                                          TECN COMMENT
 < 8.8 \times 10^{-5}
                                                                      96 CLE2 e^+e^- \rightarrow \Upsilon(4S)
                                    90
                                                  ASNER
• • • We do not use the following data for averages, fits, limits, etc. • •
< 5.2 \times 10^{-4}
                                             <sup>248</sup> ALBRECHT
                                    90
                                                                      90B ARG
                                            <sup>249</sup> BEBEK
< 5.2 \times 10^{-3}
                                    90
                                                                      87 CLEO e^+e^- \rightarrow \Upsilon(4S)
<sup>248</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
<sup>249</sup> BEBEK 87 reports < 6.1 \times 10^{-3} assuming the \Upsilon(4S) decays 43% to B^0 \, \overline{B}{}^0. We rescale
\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{total}}
                                               DOCUMENT ID TECN COMMENT
                                          250 ADAM
 < 2.3 \times 10^{-4}
                                                                   96D DLPH e^+e^- \rightarrow Z
• • • We do not use the following data for averages, fits, limits, etc.
< 2.8 \times 10^{-4}
                                 90
                                          <sup>251</sup> ABREU
                                                                   95N DLPH Sup. by ADAM 96D
                                          <sup>252</sup> ALBRECHT
 < 6.7 \times 10^{-4}
                                90
                                                                   90B ARG
^{250}\,\mathrm{ADAM} 96D assumes f_{B^0}=f_{B^-}=0.39 and f_{B_S}=0.12.
^{251} \, \mathrm{Assumes} \, a B^0 , B^- production fraction of 0.39 and a B_{\mathrm{S}} production fraction of 0.12.
<sup>252</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
```

```
\Gamma(\rho^0 \rho^0)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{130}/\Gamma
 < 2.8 \times 10^{-4}
                                          <sup>253</sup> ALBRECHT
                                 90
                                                                    90B ARG
• • • We do not use the following data for averages, fits, limits, etc. •
                                          <sup>254</sup> BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
< 2.9 \times 10^{-4}
                                 90
 <4.3 \times 10^{-4}
                                 90
                                          <sup>254</sup> BEBEK
                                                                   87 CLEO e^+e^- \rightarrow \Upsilon(4S)
<sup>253</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
<sup>254</sup> Paper assumes the \Upsilon(4S) decays 43% to B^0\overline{B}^0. We rescale to 50%.
\Gamma(a_1(1260)^{\mp}\pi^{\pm})/\Gamma_{\text{total}}
                                                                                                         \Gamma_{131}/\Gamma
VALUE
 <4.9 \times 10^{-4}
                                 90
                                          <sup>255</sup> BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)

    • • We do not use the following data for averages, fits, limits, etc.

< 6.3 \times 10^{-4}
                                          <sup>256</sup> ALBRECHT
                                                                    90B ARG
                                 90
                                          <sup>255</sup> BEBEK
<1.0 \times 10^{-3}
                                 90
                                                                    87 CLEO e^+e^- \rightarrow \Upsilon(4S)
^{255} Paper assumes the \Upsilon(4S) decays 43% to B^0 \overline{B}{}^0. We rescale to 50%.
<sup>256</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(a_2(1320)^{\mp}\pi^{\pm})/\Gamma_{\text{total}}
                                                                                                         \Gamma_{132}/\Gamma
VALUE
                                               DOCUMENT ID
                                                                        TECN COMMENT
 < 3.0 \times 10^{-4}
                                          <sup>257</sup> BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
                                 90

    • • We do not use the following data for averages, fits, limits, etc.

< 1.4 \times 10^{-3}
                                 90
                                          <sup>257</sup> BEBEK
                                                                   87 CLEO e^+e^- \rightarrow \Upsilon(4S)
^{257} Paper assumes the \Upsilon(4S) decays 43% to B^0\overline{B}^0. We rescale to 50%.
\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{133}/\Gamma
                                          <sup>258</sup> ALBRECHT
                                                                    90B ARG
                                                                                    e^+e^- \rightarrow \gamma(4S)
<sup>258</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(\rho^+\rho^-)/\Gamma_{\text{total}}
VALUE
                                               DOCUMENT ID TECN COMMENT
                                          <sup>259</sup> ALBRECHT
 < 2.2 \times 10^{-3}
                                                                   90B ARG e^+e^- \rightarrow \Upsilon(4S)
<sup>259</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(a_1(1260)^0\pi^0)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{135}/\Gamma
VALUE
                                                                       TECN COMMENT
                                          <sup>260</sup> ALBRECHT
 <1.1 \times 10^{-3}
                                 90
                                                                    90B ARG e^+e^- \rightarrow \Upsilon(4S)
<sup>260</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(\omega\pi^0)/\Gamma_{\rm total}
                                                                                                         \Gamma_{136}/\Gamma
VALUE
                                 CL%
                                               DOCUMENT ID TECN COMMENT
 <1.4 \times 10^{-5} (CL = 90%) [<4.6 \times 10^{-4} (CL = 90%) OUR 1998 BEST LIMIT]
 <1.4 \times 10^{-5}
                                          <sup>261</sup> BERGFELD
                                 90
                                                                    98 CLE2
• • • We do not use the following data for averages, fits, limits, etc. • • •
<4.6 \times 10^{-4}
                                 90
                                          <sup>262</sup> ALBRECHT
                                                                   90в ARG
                                                                                    e^+e^- \rightarrow \Upsilon(4S)
^{261} Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
^{262} ALBRECHT 90B limit assumes equal production of B^0 \, \overline{B}{}^0 and B^+ \, B^- at \Upsilon(4S).
```

```
\Gamma(\pi^+\pi^+\pi^-\pi^-\pi^0)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{137}/\Gamma
                                          <sup>263</sup> ALBRECHT
 < 9.0 \times 10^{-3}
                                 90
                                                                    90B ARG
                                                                                    e^+e^- \rightarrow \Upsilon(4S)
^{263} ALBRECHT 90B limit assumes equal production of B^0\overline{B}{}^0 and B^+B^- at \Upsilon(4S).
\Gamma(a_1(1260)^+\rho^-)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{138}/\Gamma
VALUE
                                                                         TECN <u>COMMENT</u>
 < 3.4 \times 10^{-3}
                                          <sup>264</sup> ALBRECHT
                                 90
                                                                    90B ARG
                                                                                    e^+e^- \rightarrow \Upsilon(4S)
^{264} ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(a_1(1260)^0 \rho^0)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{139}/\Gamma
VALUE
                                                                         TECN COMMENT
 < 2.4 \times 10^{-3}
                                          <sup>265</sup> ALBRECHT
                                 90
                                                                    90B ARG
<sup>265</sup> ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{140}/\Gamma
                                          <sup>266</sup> ALBRECHT
 < 3.0 \times 10^{-3}
                                                                    90B ARG
^{266} ALBRECHT 90B limit assumes equal production of B^0\overline{B}{}^0 and B^+B^- at \Upsilon(4S).
\Gamma(a_1(1260)^+ a_1(1260)^-)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{141}/\Gamma
                                                                         TECN COMMENT
                                          <sup>267</sup> BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
 < 2.8 \times 10^{-3}
                                 90
• • • We do not use the following data for averages, fits, limits, etc. •
                                          <sup>268</sup> ALBRECHT
                                 90
                                                                   90B ARG
                                                                                    e^+e^- \rightarrow \Upsilon(4S)
^{267} BORTOLETTO 89 reports < 3.2 \times 10^{-3} assuming the \Upsilon(4S) decays 43% to B^0 \overline{B}{}^0.
We rescale to 50%. 268 ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^0)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{142}/\Gamma
                                                DOCUMENT ID
                                                                         TECN COMMENT
                                          <sup>269</sup> ALBRECHT
                                 90
                                                                                    e^+e^- \rightarrow \Upsilon(4S)
                                                                    90B ARG
^{269} ALBRECHT 90B limit assumes equal production of B^0 \overline{B}{}^0 and B^+ B^- at \Upsilon(4S).
\Gamma(p\overline{p})/\Gamma_{\text{total}}
                                                                                                         \Gamma_{143}/\Gamma
                                                DOCUMENT ID TECN COMMENT
                                 CL%
 <7.0 \times 10^{-6} \text{ (CL} = 90\%)  [<1.8 × 10<sup>-5</sup> (CL = 90%) OUR 1998 BEST LIMIT]
                                          <sup>270</sup> COAN
 < 7.0 \times 10^{-6}
                                 90
                                                                    99 CLE2
                                                                                    e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc.
 < 1.8 \times 10^{-5}
                                          <sup>271</sup> BUSKULIC
                                                                    96∨ ALEP
                                                                                    e^+e^- \rightarrow Z
                                 90
                                          <sup>272</sup> ABREU
< 3.5 \times 10^{-4}
                                 90
                                                                    95N DLPH Sup. by ADAM 96D
 < 3.4 \times 10^{-5}
                                          <sup>273</sup> BORTOLETTO89 CLEO
                                                                                    e^+e^- \rightarrow \Upsilon(4S)
                                 90
<1.2 \times 10^{-4}
                                          <sup>274</sup> ALBRECHT
                                 90
                                                                   88F ARG
 < 1.7 \times 10^{-4}
                                          <sup>273</sup> BEBEK
                                 90
                                                                    87 CLEO e^+e^- \rightarrow \Upsilon(4S)
<sup>270</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
^{271} BUSKULIC 96V assumes PDG 96 production fractions for B^0, B^+, B_s, b baryons.
^{272} Assumes a B^0, B^- production fraction of 0.39 and a B_s production fraction of 0.12.
<sup>273</sup> Paper assumes the \Upsilon(4S) decays 43% to B^0\overline{B}{}^0. We rescale to 50%.
<sup>274</sup> ALBRECHT 88F reports < 1.3 \times 10^{-4} assuming the \Upsilon(4S) decays 45% to B^0 \overline{B}{}^0. We
     rescale to 50%.
                                                                            Created: 6/20/2000 14:10
```

```
\Gamma(p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{144}/\Gamma
VALUE (units 10^{-4})
                                            275 BEBEK
                                                                      89 CLEO e^+e^- \rightarrow \Upsilon(4S)
 <2.5
                                  90

    • • We do not use the following data for averages, fits, limits, etc.

                                            <sup>276</sup> ABREU
                                  90
                                                                      95N DLPH Sup. by ADAM 96D
                                            <sup>277</sup> ALBRECHT
                                                                      88F ARG
   5.4 \pm 1.8 \pm 2.0
<sup>275</sup> BEBEK 89 reports < 2.9 \times 10^{-4} assuming the \Upsilon(4S) decays 43% to B^0 \overline{B}{}^0. We rescale
^{276} Assumes a B^0, B^- production fraction of 0.39 and a B_s production fraction of 0.12.
^{277} ALBRECHT 88F reports 6.0 \pm 2.0 \pm 2.2 assuming the \varUpsilon(4S) decays 45% to B^0\overline{B}^0.
     We rescale to 50%.
\Gamma(p\overline{\Lambda}\pi^{-})/\Gamma_{\text{total}}
                                                                                                              \Gamma_{145}/\Gamma
                                  CL%
                                                 DOCUMENT ID TECN COMMENT
 <1.3 \times 10^{-5} \text{ (CL} = 90\%)  [<1.8 \times 10^{-4} \text{ (CL} = 90\%) \text{ OUR 1998 BEST LIMIT]}
 <1.3 \times 10^{-5}
                                            <sup>278</sup> COAN
                                                                      99 CLE2 e^+e^- \rightarrow \Upsilon(4S)
                                  90
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                  90
                                           <sup>279</sup> ALBRECHT 88F ARG
                                                                                       e^+e^- \rightarrow \Upsilon(4S)
<sup>278</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
<sup>279</sup> ALBRECHT 88F reports < 2.0 \times 10^{-4} assuming the \Upsilon(4S) decays 45% to B^0 \overline{B}{}^0. We
     rescale to 50%.
\Gamma(\overline{\Lambda}\Lambda)/\Gamma_{\text{total}}
                                            280 COAN
 < 3.9 \times 10^{-6}
                                                                      99 CLE2 e^+e^- \rightarrow \Upsilon(4S)
<sup>280</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\Delta^0 \overline{\Delta}{}^0)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{147}/\Gamma
<u>VALU</u>E
                                  CL%
                                                 DOCUMENT ID
                                                                        TECN COMMENT
                                            <sup>281</sup> BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
 < 0.0015
<sup>281</sup> BORTOLETTO 89 reports < 0.0018 assuming \Upsilon(4S) decays 43% to B^0 \overline{B}{}^0. We rescale
     to 50%.
\Gamma(\Delta^{++}\Delta^{--})/\Gamma_{\text{total}}
                                                                                                              \Gamma_{148}/\Gamma
                                            <sup>282</sup> BORTOLETTO89 CLEO e^+e^- \rightarrow \Upsilon(4S)
                                  90
<sup>282</sup>BORTOLETTO 89 reports < 1.3 \times 10^{-4} assuming \Upsilon(4S) decays 43% to B^0 \overline{B}{}^0. We
\Gamma(\overline{\Sigma}_{c}^{--}\Delta^{++})/\Gamma_{\text{total}}
                                                                                                              \Gamma_{149}/\Gamma
 < 0.0010
<sup>283</sup> PROCARIO 94 reports < 0.0012 for B(\Lambda_c^+ \to p K^- \pi^+) = 0.043. We rescale to our
     best value B(\Lambda_c^+ \rightarrow pK^-\pi^+) = 0.050.
```

$\Gamma(\overline{\Lambda}_c^- p \pi^+ \pi^-)/\Gamma_{ ext{total}}$					Γ ₁₅₀ /Γ
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
$1.33^{+0.46}_{-0.42}\pm0.37$	²⁸⁴ FU		CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
²⁸⁴ FU 97 uses PDG 96 value	s of $arLambda_{\mathcal{C}}$ branching frac	tion.			
$\Gamma(\overline{\Lambda}_{c}^{-} p)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₁₅₁ /Γ
<u>VALUE</u> <u>CL%</u> <2.1 × 10 ^{−4} 90	285 _{FII}	97	CLF2	<u>comment</u> →	$\Upsilon(AS)$
²⁸⁵ FU 97 uses PDG 96 value			CLLZ	C C /	7 (43)
	3 Of 71 _C branching rath	0.			
$\Gamma(\overline{\Lambda}_c^- \rho \pi^0)/\Gamma_{\text{total}}$					Γ ₁₅₂ /Γ
VALUE CL% <5.9 × 10⁻⁴ 90	DOCUMENT ID		TECN	COMMENT	
<5.9 × 10⁻⁴ 90	²⁸⁶ FU	97	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
²⁸⁶ FU 97 uses PDG 96 value	s of $arLambda_{\mathcal{C}}$ branching ratio	0.			
_					F /F
$\Gamma(\overline{\Lambda}_c^- p \pi^+ \pi^- \pi^0) / \Gamma_{\text{total}}$	DOCUMENT ID		TECN	CO. 41 45 14 T	Γ ₁₅₃ /Γ
$ \frac{VALUE}{<5.07 \times 10^{-3}} $ 90	<u>DOCUMENT ID</u> 287 EU	07	<u>TECN</u>	<u>COMMENT</u>	20(4.0)
			CLE2	e ' e →	1 (45)
²⁸⁷ FU 97 uses PDG 96 value	s of $\Lambda_{\mathcal{C}}$ branching ratio	0.			
$\Gamma(\overline{\Lambda}_c^- p \pi^+ \pi^- \pi^+ \pi^-)/\Gamma_{to}$	otal				Γ ₁₅₄ /Γ
			TECN	COMMENT	
$\frac{VALUE}{< 2.74 \times 10^{-3}}$ 90	²⁸⁸ FU	97	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
²⁸⁸ FU 97 uses PDG 96 value					
	C				F /F
$\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	CO. 41 45 14 T	Γ ₁₅₅ /Γ
<u>VALUE</u> <u>CL%</u> <3.9 × 10 ^{−5} 90	289 ACCIARRI	051	IECN_	<u>COMMENT</u> -+	7
					Z
289 ACCIARRI 951 assumes f_{E}	$_{30} = 39.5 \pm 4.0$ and t_{1}	$B_s =$	$12.0 \pm$	3.0%.	
$\Gamma(e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak	noutral aurrent Allau	رما اص	, himbor	ardar alastr	Γ ₁₅₆ /Γ
tions.	neutral current. Allow	red by	/ Iligilei	-order electr	oweak iiiterac-
VALUE CL%	DOCUMENT ID			<u>COMMENT</u>	
<5.9 × 10⁻⁶ 90	AMMAR			$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the follo					
$<1.4 \times 10^{-5}$ 90	²⁹⁰ ACCIARRI			$e^+e^- \rightarrow$	
$<2.6 \times 10^{-5}$ 90 $<7.6 \times 10^{-5}$ 90	291 AVERY	89B	CLEO	$e^+e^- \rightarrow$	T(4S)
$<7.6 \times 10^{-5}$ 90 $<6.4 \times 10^{-5}$ 90	²⁹² ALBRECHT ²⁹³ AVERY	87D	ARG	$e \mid e \rightarrow$	7 (45) Y(45)
$< 0.4 \times 10^{-4}$ 90	GILES	84	CLEO	Repl. by A	7 (43) WFRY 87
²⁹⁰ ACCIARRI 97B assume PI					
²⁹¹ AVERY 89B reports < 3 ×	10^{-5} assuming the γ	(4 <i>S</i>)	decays	, <i>B</i> , <i>B</i> _s , an 43% to <i>B</i> 0 1	30° . We rescale
to 50%. 292 ALBRECHT 87D reports <	.0510-5	` /	20(4.0)	1 4=0/	. 50 .5 0 w
rescale to 50%	$<$ 8.5 $ imes$ 10 $^{-3}$ assuming	g the	1 (45)	decays 45%	to Bo Bo. We
$^{293}\mathrm{AVERY}$ 87 reports $<$ 8 \times	10^{-5} assuming the γ	(45)	decays 4	40% to $B^0\overline{B}$	$\overline{8}^0$. We rescale
to 50%.					

 $\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	COMMENT
$< 6.8 \times 10^{-7}$	90	²⁹⁴ ABE	98 CDF	$p\overline{p}$ at $1.8~{\sf TeV}$
• • • We do not use the	followi	ng data for averages	s, fits, limit	s, etc. • • •
$< 4.0 \times 10^{-5}$	90	ABBOTT	98B D0	<i>p</i> p 1.8 TeV
$< 1.0 \times 10^{-5}$	90	²⁹⁵ ACCIARRI	97B L3	$e^+e^- o Z$
$< 1.6 \times 10^{-6}$	90	²⁹⁶ ABE	96L CDF	Repl. by ABE 98
$< 5.9 \times 10^{-6}$	90	AMMAR	94 CLE2	$e^+e^- o ~ \varUpsilon(4S)$
$< 8.3 \times 10^{-6}$	90	²⁹⁷ ALBAJAR	91C UA1	$E_{ m cm}^{p\overline{p}}=$ 630 GeV
$< 1.2 \times 10^{-5}$	90	²⁹⁸ ALBAJAR	91C UA1	$E_{ m cm}^{p\overline{p}}=$ 630 GeV
$< 4.3 \times 10^{-5}$	90	²⁹⁹ AVERY	89B CLEC	$e^+e^- ightarrow~ \gamma(4S)$
$< 4.5 \times 10^{-5}$	90	³⁰⁰ ALBRECHT	87D ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$
$< 7.7 \times 10^{-5}$	90	³⁰¹ AVERY	87 CLEC	$e^+e^- \rightarrow \Upsilon(4S)$
$< 2 \times 10^{-4}$	90	GILES	84 CLEC	Repl. by AVERY 87

²⁹⁴ ABE 98 assumes production of $\sigma(B^0) = \sigma(B^+)$ and $\sigma(B_s)/\sigma(B^0) = 1/3$. They normalize to their measured $\sigma(B^0, p_T(B) > 6, |y| < 1.0) = 2.39 \pm 0.32 \pm 0.44 \,\mu b$.

 $\Gamma(K^0 e^+ e^-)/\Gamma_{\text{total}}$ Γ_{158}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
$< 3.0 \times 10^{-4}$	90	ALBRECHT	91E ARG	$e^+e^- ightarrow ~ \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
5.2 \times 10⁻⁴ 90 ³⁰² AVERY 87 CLEO $e^+e^- \rightarrow ~ \varUpsilon$ (4 S)

 $^{302}\,\text{AVERY}$ 87 reports $<6.5\times10^{-4}$ assuming the $\varUpsilon(4S)$ decays 40% to $B^0\,\overline{B}{}^0$. We rescale to 50%

 $\Gamma(K^0\mu^+\mu^-)/\Gamma_{\text{total}}$ Γ_{159}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

$$\frac{\text{VALUE}}{\text{<3.6} \times 10^{-4}}$$
 $\frac{\text{CL\%}}{90}$ $\frac{\text{DOCUMENT ID}}{\text{AVERY}}$ 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
5.2 \times 10⁻⁴ 90 ALBRECHT 91E ARG $e^+e^- \rightarrow \Upsilon(4S)$

 303 AVERY 87 reports $<4.5\times10^{-4}$ assuming the $\varUpsilon(4S)$ decays 40% to $B^0\,\overline{B}{}^0$. We rescale to 50%.

²⁹⁵ ACCIARRI 97B assume PDG 96 production fractions for B^+ , B^0 , B_s , and Λ_h .

²⁹⁶ ABE 96L assumes equal B^0 and B^+ production. They normalize to their measured $\sigma(B^+, p_T(B) > 6 \text{ GeV}/c, |y| < 1) = 2.39 \pm 0.54 \,\mu\text{b}$.

 $^{^{297}}B^0$ and B^0_s are not separated.

²⁹⁸ Obtained from unseparated B^0 and B^0_s measurement by assuming a $B^0 : B^0_s$ ratio 2:1.

²⁹⁹ AVERY 89B reports $< 5 \times 10^{-3}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%.

to 50%. 300 ALBRECHT 87D reports < 5 \times 10 $^{-5}$ assuming the \varUpsilon (4S) decays 45% to $B^0\overline{B}^0$. We rescale to 50%.

³⁰¹ AVERY 87 reports $< 9 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%.

$\Gamma(K^*(892)^0 e^+ e^-$	$-)/\Gamma_{\text{total}}$					Γ_{160}/Γ
Test for $\Delta B = \frac{VALUE}{VALUE}$: I weak ne <i>CL%</i>	utral current. <u>DOCUMENT ID</u>		TECN	COMMENT	
<2.9 × 10 ⁻⁴	90	ALBRECHT	91E	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(K^*(892)^0 \mu^+ \mu^-$ Test for $\Delta B =$	-)/F _{total}	utral current				Γ ₁₆₁ /Γ
<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$<4.0 \times 10^{-6} (CL =$	90%) [<					
$< 4.0 \times 10^{-6}$	90	³⁰⁴ AFFOLDER				-eV
• • • We do not use			es, fits,	limits,	etc. • • •	
$< 2.5 \times 10^{-5}$		³⁰⁵ ABE			Repl. by AI <u>F</u> OLDEF	R 99 B
$< 2.3 \times 10^{-5}$	90	³⁰⁶ ALBAJAR	91 C	UA1	$E_{\rm cm}^{p\overline{p}} = 630$	GeV
$< 3.4 \times 10^{-4}$	90	ALBRECHT	91E	ARG	$e^+e^ \rightarrow$	$\Upsilon(4S)$
304 AFFOLDER 99B 305 ABE 96L measure 306 ALBAJAR 91C as	ed relative t	o $B^0 o J/\psi(1S) F$	<*(892	$(2)^0$ using		inching ratios.
$\Gamma(K^*(892)^0\nu\overline{\nu})/$	Γ _{total} ,					Γ ₁₆₂ /Γ
Test for $\Delta B = VALUE$: I weak ne CL%	utral current. <u>DOCUMENT ID</u>		TECN	COMMENT	
<1.0 × 10 ⁻³	90	307 ADAM	96D	DLPH	$e^+e^- \rightarrow$	
307 ADAM 96D assur	$mes f_{B^0} =$	$f_{B^-} = 0.39 \text{ and } f_{B^-}$	$B_{s} = 0$.12.		
$\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$	£ :	.h				Γ ₁₆₃ /Γ
Test of lepton		aber conservation. DOCUMENT ID		TECN	COMMENT	Γ ₁₆₃ /Γ
Test of lepton VALUE	CL%	DOCUMENT ID				
Test of lepton	<u>CL%</u> = 90%) [<	$\frac{DOCUMENT\ ID}{(5.9 \times 10^{-6}\ (CL =$	90%)	OUR 1		IMIT]
Test of lepton $\frac{VALUE}{<3.5 \times 10^{-6} \text{ (CL = }}$	<u>CL%</u> = 90%) [<	$\frac{DOCUMENT ID}{5.9 \times 10^{-6} \text{ (CL}} = ABE$	90%) 98v	OUR 1	998 BEST L p p at 1.8 T	IMIT]
Test of lepton VALUE $<3.5 \times 10^{-6}$ (CL = $<3.5 \times 10^{-6}$	<u>CL%</u> = 90%) [<	$\frac{DOCUMENT ID}{5.9 \times 10^{-6} \text{ (CL}} = ABE$	90%) 98∨ es, fits,	OUR 1 CDF limits,	998 BEST L p p at 1.8 T	MIT] eV
Test of lepton VALUE $< 3.5 \times 10^{-6} \text{ (CL} = $ $< 3.5 \times 10^{-6}$ • • • We do not use $< 1.6 \times 10^{-5}$ $< 5.9 \times 10^{-6}$	CL% = 90%) [< 90 e the follow	$\begin{array}{c} \underline{DOCUMENT\ ID} \\ 5.9 \times 10^{-6} \ (\text{CL} = \\ \text{ABE} \\ \text{ing data for average} \\ 308 \ \text{ACCIARRI} \\ \text{AMMAR} \end{array}$	90%) 98V es, fits, 97B 94	OUR 1 CDF limits, L3 CLE2	998 BEST LI $p\overline{p} \text{ at } 1.8 \text{ T}$ etc. • • • $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$	IMIT] TeV Z $\Upsilon(4S)$
Test of lepton VALUE	90%) [< 90 e the follow	$\begin{array}{c} \underline{DOCUMENT\ ID} \\ 5.9 \times 10^{-6}\ (\text{CL} = \\ \text{ABE} \\ \text{ing data for average} \\ 308\ \text{ACCIARRI} \\ \text{AMMAR} \\ 309\ \text{AVERY} \end{array}$	90%) 98∨ es, fits, 97B 94 89B	OUR 1 CDF limits, L3 CLE2 CLEO	998 BEST LI $p\overline{p} \text{ at } 1.8 \text{ T}$ etc. • • • $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$	MIT] $ \tilde{E}$ $ V$
Test of lepton VALUE $< 3.5 \times 10^{-6} \text{ (CL} = $ $< 3.5 \times 10^{-6}$ • • • We do not use $< 1.6 \times 10^{-5}$ $< 5.9 \times 10^{-6}$ $< 3.4 \times 10^{-5}$ $< 4.5 \times 10^{-5}$	90%) [< 90%) 90 e the follow 90 90 90 90 90	$\begin{array}{c} \underline{DOCUMENT\ ID} \\ 5.9 \times 10^{-6} \ (\text{CL} = \\ \text{ABE} \\ \text{ing data for average} \\ 308 \ \text{ACCIARRI} \\ \text{AMMAR} \\ 309 \ \text{AVERY} \\ 310 \ \text{ALBRECHT} \end{array}$	90%) 98V es, fits, 97B 94 89B 87D	OUR 1 CDF limits, L3 CLE2 CLEO ARG	998 BEST LI $p\overline{p} \text{ at } 1.8 \text{ T}$ etc. • • • $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$	Γ [MIT] Γ eV Γ
Test of lepton VALUE <3.5 × 10 ⁻⁶ (CL = <3.5 × 10 ⁻⁶) • • • We do not use <1.6 × 10 ⁻⁵ <5.9 × 10 ⁻⁶ <3.4 × 10 ⁻⁵ <4.5 × 10 ⁻⁵ <7.7 × 10 ⁻⁵	90%) [< 90%) [< 90 90 90 90 90 90 90	$\begin{array}{c} \underline{DOCUMENT\ ID} \\ 5.9 \times 10^{-6}\ (\text{CL} = \\ \text{ABE} \\ \text{ing data for average} \\ 308\ \text{ACCIARRI} \\ \text{AMMAR} \\ 309\ \text{AVERY} \\ 310\ \text{ALBRECHT} \\ 311\ \text{AVERY} \end{array}$	90%) 98∨ es, fits, 97B 94 89B 87D 87	OUR 1 CDF limits, L3 CLE2 CLEO ARG CLEO	998 BEST LI $p\overline{p}$ at 1.8 T etc. • • • $e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow e^- e^- e^- \rightarrow e^- e^- e^- e^- e^- e^- e^- e^- e^- e^-$	IMIT] $ Z Y(4S) Y(4S) Y(4S) Y(4S)$
Test of lepton VALUE <3.5 × 10 ⁻⁶ (CL = <3.5 × 10 ⁻⁶) • • • We do not use <1.6 × 10 ⁻⁵ <5.9 × 10 ⁻⁶ <3.4 × 10 ⁻⁵ <4.5 × 10 ⁻⁵ <7.7 × 10 ⁻⁵ <3 × 10 ⁻⁴	90%) [< 90%) [< 90 90 90 90 90 90 90 90	DOCUMENT ID (5.9 × 10 ⁻⁶ (CL = ABE ing data for average 308 ACCIARRI AMMAR 309 AVERY 310 ALBRECHT 311 AVERY GILES	90%) 98V es, fits, 97B 94 89B 87D 87	OUR 1 CDF limits, L3 CLE2 CLEO ARG CLEO CLEO	998 BEST LI $p\overline{p} \text{ at } 1.8 \text{ T}$ etc. • • • $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ $e^{+}e^{-} \rightarrow$ Repl. by AN	[MIT] $ \begin{array}{c} Z \\ \Upsilon(4S) \\ \Upsilon(4S) \\ \Upsilon(4S) \\ \Upsilon(4S) \\ \Upsilon(4S) \\ \Upsilon(4S) \end{array} $
Test of lepton VALUE	90 Ssume PDC ne $\Upsilon(4S)$ CL% Solution Solution	DOCUMENT ID (5.9 × 10 ⁻⁶ (CL = ABE ing data for average 308 ACCIARRI AMMAR 309 AVERY 310 ALBRECHT 311 AVERY GILES 6 96 production frace ecays 43% to B ⁰ B	90%) 98V es, fits, 97B 94 89B 87D 87 84 ctions f	OUR 1 CDF limits, L3 CLE2 CLEO ARG CLEO CLEO for B ⁺ , rescale	998 BEST LI $p\overline{p}$ at 1.8 T etc. • • • $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow E^0$ Repl. by AN B^0 , B_S , and to 50%.	[MIT] TeV
Test of lepton VALUE <3.5 × 10^{-6} (CL = <3.5 × 10^{-6}) • • • We do not use <1.6 × 10^{-5} <5.9 × 10^{-6} <3.4 × 10^{-5} <4.5 × 10^{-5} <7.7 × 10^{-5} <3 × 10^{-4} 308 ACCIARRI 97B a 309 Paper assumes the 310 ALBRECHT 87D	90 Ssume PDC ne $\Upsilon(4S)$ CL% Solution Solution	DOCUMENT ID (5.9 × 10 ⁻⁶ (CL = ABE ing data for average 308 ACCIARRI AMMAR 309 AVERY 310 ALBRECHT 311 AVERY GILES 6 96 production frace ecays 43% to B ⁰ B	90%) 98V es, fits, 97B 94 89B 87D 87 84 ctions f	OUR 1 CDF limits, L3 CLE2 CLEO ARG CLEO CLEO for B ⁺ , rescale	998 BEST LI $p\overline{p}$ at 1.8 T etc. • • • $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow E^0$ Repl. by AN B^0 , B_S , and to 50%.	[MIT] TeV
Test of lepton VALUE	$CL\%$ = 90%) [< 90 e the follow 90 90 90 90 90 ssume PDC ne $\Upsilon(4S)$ d reports <	DOCUMENT ID (5.9×10^{-6}) (CL = ABE ing data for average (5.9×10^{-6}) (CL = ABE ing data for average (5.9×10^{-6}) (CL = ABE ing data for average (5.9×10^{-6}) (CL = ABE (5.9×10^{-6}) (CL = (5.9×10^{-6}) (CL	90%) 98V es, fits, 97B 94 89B 87D 87 84 ctions (OUR 1 CDF limits, L3 CLE2 CLEO ARG CLEO CLEO for B ⁺ , rescale	998 BEST LI $p\overline{p}$ at 1.8 T etc. • • • $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow E^0$ Repl. by AN B^0 , B_S , and to 50%. Hecays 45% t	[MIT] TeV Z $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ /ERY 87 $Text{d} \Lambda_b$.
Test of lepton VALUE <3.5 × 10 ⁻⁶ (CL = <3.5 × 10 ⁻⁶) • • • We do not use <1.6 × 10 ⁻⁵ <5.9 × 10 ⁻⁶ <3.4 × 10 ⁻⁵ <4.5 × 10 ⁻⁵ <7.7 × 10 ⁻⁵ <3 × 10 ⁻⁴ 308 ACCIARRI 97B a 309 Paper assumes th 310 ALBRECHT 87D rescale to 50%. 311 AVERY 87 report to 50%. $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$	CL% $=$ 90%) [< 90 $=$ the follow 90 $=$ 90 $=$ 90 $=$ 90 $=$ 90 $=$ 90 $=$ 90 $=$ 10 $=$ $T(4S)$ derivative constants of the second constants of	DOCUMENT ID (5.9×10^{-6}) (CL = ABE and ACCIARRI AMMAR (5.9×10^{-6}) (CL = ABE and ACCIARRI AMMAR (5.9×10^{-6}) AUBRECHT (5.9×10^{-5}) AUBRECHT (5.9×10^{-5}) ASSuming the (5.9×10^{-5})	90%) 98V es, fits, 97B 94 89B 87D 87 84 ctions (OUR 1 CDF limits, L3 CLE2 CLEO ARG CLEO CLEO for B ⁺ , rescale	998 BEST LI $p\overline{p}$ at 1.8 T etc. • • • $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow E^0$ Repl. by AN B^0 , B_S , and to 50%. Hecays 45% t	[MIT] TeV Z $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ /ERY 87 $Text{d} \Lambda_b$.
Test of lepton VALUE <3.5 × 10 ⁻⁶ (CL = <3.5 × 10 ⁻⁶) • • • We do not use <1.6 × 10 ⁻⁵ <5.9 × 10 ⁻⁶ <3.4 × 10 ⁻⁵ <4.5 × 10 ⁻⁵ <7.7 × 10 ⁻⁵ <3 × 10 ⁻⁴ 308 ACCIARRI 97B a 309 Paper assumes th 310 ALBRECHT 87D rescale to 50%. 311 AVERY 87 report to 50%. $\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$	CL% $=$ 90%) [< 90 $=$ the follow 90 $=$ 90 $=$ 90 $=$ 90 $=$ 90 $=$ 90 $=$ 90 $=$ 10 $=$ $T(4S)$ derivative constants of the second constants of	DOCUMENT ID (5.9×10^{-6}) (CL = ABE ing data for average (5.9×10^{-6}) (CL = ABE ing data for average (5.9×10^{-6}) (CL = ABE ing data for average (5.9×10^{-6}) (CL = ABE (5.9×10^{-6}) (CL = (5.9×10^{-6}) (CL	90%) 98V es, fits, 97B 94 89B 87D 87 84 ections for We g the	OUR 10 CDF Ilmits, L3 CLE2 CLEO ARG CLEO for B+, rescale Y(45) cdecays 4	998 BEST LI $p\overline{p}$ at 1.8 T etc. • • • $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow E^0$ Repl. by AN B^0 , B_S , and to 50%. Hecays 45% t	[MIT] TeV Z $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ /ERY 87 d Λ_b . o $B^0\overline{B}^0$. We
Test of lepton VALUE <3.5 × 10 ⁻⁶ (CL = <3.5 × 10 ⁻⁶ • • • We do not use <1.6 × 10 ⁻⁵ <5.9 × 10 ⁻⁶ <3.4 × 10 ⁻⁵ <4.5 × 10 ⁻⁵ <7.7 × 10 ⁻⁵ <3 × 10 ⁻⁴ 308 ACCIARRI 97B a 309 Paper assumes th 310 ALBRECHT 87D rescale to 50%. 311 AVERY 87 report to 50%. Γ(e [±] τ [∓])/Γtotal Test of lepton	CL% 90 $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$ $1 < 90$	DOCUMENT ID (5.9×10^{-6}) (CL = ABE (5.9×10^{-6}) (CL = $(5.9 \times$	90%) 98V es, fits, 97B 94 89B 87D 87 84 ctions (0). We g the (7(4S))	OUR 1 CDF limits, L3 CLE2 CLEO ARG CLEO CLEO for B+, rescale Y(4S) of	998 BEST LI $p\overline{p}$ at 1.8 T etc. • • • $e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow e^+e^- \rightarrow E^0$ Repl. by AN B^0 , B_s , and to 50%. Hecays 45% to B^0	[MIT] TeV Z $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ /ERY 87 If Λ_b . To $B^0\overline{B}^0$. We O. We rescale Γ_{164}/Γ

 $\Gamma(\mu^{\pm} au^{\mp})/\Gamma_{
m total}$

 Γ_{165}/Γ

Test of lepton family number conservation.

<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 8.3 \times 10^{-4}$	90	AMMAR	94	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$

POLARIZATION IN BO DECAY

Γ_L/Γ in $B^0 \rightarrow J/\psi(1S) K^*(892)^0$

 $\Gamma_L/\Gamma=1[0]$ would indicate that $B^0\to J/\psi(1S)\,K^*(892)^0$ followed by $K^*(892)^0\to K^0_S\,\pi^0$ is a pure CP eigenstate with CP=-1[+1].

DOCUMENT ID TECN COMMENT **0.60±0.09 OUR AVERAGE** Error includes scale factor of 1.4. See the ideogram below. 312 JESSOP $0.52 \pm 0.07 \pm 0.04$ 97 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.65 \pm 0.10 \pm 0.04$ ABE 95z CDF $p\overline{p}$ at 1.8 TeV 65 ³¹³ ALBRECHT $0.97\!\pm\!0.16\!\pm\!0.15$ 13 94G ARG $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • 42 ³¹³ ALAM 94 CLE2 Sup. by JESSOP 97 $0.80 \pm 0.08 \pm 0.05$

 312 JESSOP 97 is the average over a mixture of B^0 and B^+ decays. The P-wave fraction is found to be 0.16 \pm 0.08 \pm 0.04.

 313 Averaged over an admixture of B^0 and B^+ decays.

$$\Gamma_L/\Gamma$$
 in $B^0 \rightarrow J/\psi(1S) K^*(892)^0$

$$\Gamma_L/\Gamma$$
 in $B^0 \rightarrow D^{*-} \rho^+$

VALUE

0.93±0.05±0.05

PART DOCUMENT ID

ALAM

94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$B^0 - \overline{B}{}^0$ MIXING

Written March 2000 by O. Schneider (Univ. of Lausanne)

Formalism in quantum mechanics

There are two neutral $B^0-\overline{B}^0$ meson systems, $B_d-\overline{B}_d$ and $B_s-\overline{B}_s$ (generically denoted $B_q-\overline{B}_q$, q=s,d), which exhibit the phenomenon of particle-antiparticle mixing [1]. Such a system is produced in one of its two possible states of well-defined flavor: $|B^0\rangle$ ($\overline{b}q$) or $|\overline{B}^0\rangle$ ($b\overline{q}$). Due to flavor-changing interactions, this initial state evolves into a time-dependent quantum superposition of the two flavor states, $a(t)|B^0\rangle + b(t)|\overline{B}^0\rangle$, satisfying the equation

$$i\frac{\partial}{\partial t} \begin{pmatrix} a(t) \\ b(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \right) \begin{pmatrix} a(t) \\ b(t) \end{pmatrix}, \tag{1}$$

where \mathbf{M} and Γ , known as the mass and decay matrices, describe the dispersive and absorptive parts of $B^0 - \overline{B}{}^0$ mixing. These matrices are hermitian, and CPT invariance requires $M_{11} = M_{22} \equiv M$ and $\Gamma_{11} = \Gamma_{22} \equiv \Gamma$, where M and Γ are the mass and decay width of the B^0 and $\overline{B}{}^0$ flavor states.

The two eigenstates of the effective hamiltonian matrix $(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma})$ are given by

$$|B_{\pm}\rangle = p|B^{0}\rangle \pm q|\overline{B}^{0}\rangle,$$
 (2)

and correspond to the eigenvalues

$$\lambda_{\pm} = \left(M - \frac{i}{2}\Gamma\right) \pm \frac{q}{p} \left(M_{12} - \frac{i}{2}\Gamma_{12}\right) , \qquad (3)$$

where

$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}}.$$
 (4)

HTTP://PDG.LBL.GOV

Page 46

We choose a convention where Re(q/p) > 0 and $CP|B^0\rangle = |\overline{B}^0\rangle$. An alternative notation is

$$|B_{\pm}\rangle = \frac{(1+\epsilon)|B^0\rangle \pm (1-\epsilon)|\overline{B}^0\rangle}{\sqrt{2(1+|\epsilon|^2)}} \quad \text{with} \quad \frac{1-\epsilon}{1+\epsilon} = \frac{q}{p}.$$
 (5)

The time dependence of these eigenstates of well-defined masses $M_{\pm} = \text{Re}(\lambda_{\pm})$ and widths $\Gamma_{\pm} = -2 \text{Im}(\lambda_{\pm})$ is given by the phases $e^{-i\lambda_{\pm}t} = e^{-iM_{\pm}t}e^{-\frac{1}{2}\Gamma_{\pm}t}$: the evolution of a pure $|B^{0}\rangle$ or $|\overline{B}^{0}\rangle$ state at t=0 is thus given by

$$|B^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle,$$
 (6)

$$|\overline{B}^{0}(t)\rangle = g_{+}(t)|\overline{B}^{0}\rangle + \frac{p}{q}g_{-}(t)|B^{0}\rangle,$$
 (7)

where

$$g_{\pm}(t) = \frac{1}{2} \left(e^{-i\lambda_{+}t} \pm e^{-i\lambda_{-}t} \right) . \tag{8}$$

This means that the flavor states oscillate into each other with time-dependent probabilities proportional to

$$|g_{\pm}(t)|^2 = \frac{e^{-\Gamma t}}{2} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) \pm \cos(\Delta m t) \right],$$
 (9)

where

$$\Delta m = |M_{+} - M_{-}|, \quad \Delta \Gamma = |\Gamma_{+} - \Gamma_{-}|.$$
 (10)

Time-integrated mixing probabilities are only well defined when considering decays to flavor-specific final states, *i.e.* final states f such that the instantaneous decay amplitudes $A_{\overline{f}} = \langle \overline{f}|H|B^0\rangle$ and $\overline{A}_f = \langle f|H|\overline{B}^0\rangle$, where H is the weak interaction hamiltonian, are both zero. Due to mixing, a produced B^0 can decay to the final state \overline{f} (mixed event) in addition to the final state

f (unmixed event). Restricting the sample to these two decay channels, the time-integrated mixing probability is given by

$$\chi_f^{B^0 \to \overline{B}^0} = \frac{\int_0^\infty |\langle \overline{f} | H | B^0(t) \rangle|^2 dt}{\int_0^\infty |\langle \overline{f} | H | B^0(t) \rangle|^2 dt + \int_0^\infty |\langle f | H | B^0(t) \rangle|^2 dt}
= \frac{|\xi_f|^2 (x^2 + y^2)}{|\xi_f|^2 (x^2 + y^2) + 2 + x^2 - y^2},$$
(11)

where we have defined $\xi_f = \frac{q}{p} \frac{\overline{A_f}}{A_f}$ and

$$x = \frac{\Delta m}{\Gamma}, \quad y = \frac{\Delta \Gamma}{2\Gamma}.$$
 (12)

The mixing probability $\chi_f^{\overline B^0 \to B^0}$ for the case of a produced $\overline B{}^0$ is obtained by replacing ξ_f with $1/\xi_f$ in Eq. (11). It is different from $\chi_f^{B^0 \to \overline B^0}$ if $|\xi_f|^2 \neq 1$, a condition reflecting noninvariance under the CP transformation. CP violation in the decay amplitudes is discussed elsewhere [2] and we assume $|\overline A_{\overline f}| = |A_f|$ from now on. The deviation of $|q/p|^2$ from 1, namely the quantity

$$1 - \left| \frac{q}{p} \right|^2 = \frac{4 \operatorname{Re}(\epsilon)}{1 + |\epsilon|^2} + \mathcal{O}\left(\left(\frac{\operatorname{Re}(\epsilon)}{1 + |\epsilon|^2} \right)^2 \right) , \tag{13}$$

describes CP violation in $B^0-\overline{B}^0$ mixing. As can be seen from Eq. (4), this can occur only if $M_{12} \neq 0$, $\Gamma_{12} \neq 0$ and if the phase difference between M_{12} and Γ_{12} is different from 0 or π .

In the absence of CP violation, $|q/p|^2 = 1$, $Re(\epsilon) = 0$, the mass eigenstates are also CP eigenstates,

$$CP|B_{\pm}\rangle = \pm |B_{\pm}\rangle,$$
 (14)

the phases $\varphi_{M_{12}} = \arg(M_{12})$ and $\varphi_{\Gamma_{12}} = \arg(\Gamma_{12})$ satisfy

$$\sin(\varphi_{M_{12}} - \varphi_{\Gamma_{12}}) = 0, \qquad (15)$$

HTTP://PDG.LBL.GOV

Page 48

the mass and decay width differences reduce to

$$\Delta m = 2 |M_{12}|, \quad \Delta \Gamma = 2 |\Gamma_{12}|, \quad (16)$$

and the time-integrated mixing probabilities $\chi_f^{B^0 \to \overline{B}^0}$ and $\chi_f^{\overline{B}^0 \to B^0}$ become both equal to

$$\chi = \frac{x^2 + y^2}{2(x^2 + 1)} \,. \tag{17}$$

Standard Model predictions and phenomenology

In the Standard Model, the transitions $B_q^0 \to \overline{B}_q^0$ and $\overline{B}_q^0 \to B_q^0$ are due to the weak interaction. They are described, at the lowest order, by the box diagrams involving two W bosons and two up-type quarks, as is the case for $K^0 - \overline{K}^0$ mixing. However, the long range interactions arising from intermediate virtual states are negligible for the neutral B meson systems, because the large B mass is away from the region of hadronic resonances. The calculation of the dispersive and absorptive parts of the box diagrams yields the following predictions for the off-diagonal element of the mass and decay matrices [3],

$$M_{12} = -\frac{G_F^2 m_W^2 \eta_B m_{B_q} B_{B_q} f_{B_q}^2}{12\pi^2} S_0(m_t^2/m_W^2) (V_{tq}^* V_{tb})^2$$

$$\Gamma_{12} = \frac{G_F^2 m_b^2 \eta_B' m_{B_q} B_{B_q} f_{B_q}^2}{8\pi}$$

$$\times \left[(V_{tq}^* V_{tb})^2 + V_{tq}^* V_{tb} V_{cq}^* V_{cb} \mathcal{O}\left(\frac{m_c^2}{m_b^2}\right) \right]$$

$$+ (V_{cq}^* V_{cb})^2 \mathcal{O}\left(\frac{m_c^4}{m_t^4}\right)$$

$$(19)$$

where G_F is the Fermi constant, m_W the W mass, m_i the mass of quark i, and where $m_{B_q} = M$, f_{B_q} and B_{B_q} are the B_q^0 mass,

HTTP://PDG.LBL.GOV

Page 49

decay constant and bag parameter. The known function $S_0(x_t)$ can be approximated very well with $0.784 x_t^{0.76}$ [4] and V_{ij} are the elements of the CKM matrix [5]. The QCD corrections η_B and η'_B are of order unity. The only non negligible contributions to M_{12} are from top-top diagrams. The phases of M_{12} and Γ_{12} satisfy

$$\varphi_{M_{12}} - \varphi_{\Gamma_{12}} = \pi + \mathcal{O}\left(\frac{m_c^2}{m_b^2}\right) \tag{20}$$

implying that the mass eigenstates have mass and width differences of opposite signs. This means that, like in the $K^0-\overline{K}^0$ system, the "heavy" state with mass $M_{\text{heavy}} = \max(M_+, M_-)$ has a smaller decay width than that of the "light" state with mass $M_{\text{light}} = \min(M_+, M_-)$. We thus redefine

$$\Delta m = M_{\text{heavy}} - M_{\text{light}}, \quad \Delta \Gamma = \Gamma_{\text{light}} - \Gamma_{\text{heavy}}, \quad (21)$$

where Δm is positive by definition and $\Delta\Gamma$ is expected to be positive in the Standard Model.

Furthermore, since Γ_{12} is, like M_{12} , dominated by the top-top diagrams, the quantity

$$\left| \frac{\Gamma_{12}}{M_{12}} \right| \simeq \frac{3\pi}{2} \frac{m_b^2}{m_W^2} \frac{1}{S_0(m_t^2/m_W^2)} \sim \mathcal{O}\left(\frac{m_b^2}{m_t^2}\right)$$
 (22)

is small, and a power expansion of $|q/p|^2$ yields

$$\left| \frac{q}{p} \right|^2 = 1 + \left| \frac{\Gamma_{12}}{M_{12}} \right| \sin(\varphi_{M_{12}} - \varphi_{\Gamma_{12}}) + \mathcal{O}\left(\left| \frac{\Gamma_{12}}{M_{12}} \right|^2 \right). \tag{23}$$

Therefore, considering both Eqs. (20) and (22), the CP-violating parameter

$$1 - \left| \frac{q}{p} \right|^2 \simeq \operatorname{Im} \left(\frac{\Gamma_{12}}{M_{12}} \right) \tag{24}$$

is expected to be tiny: $\sim \mathcal{O}(10^{-3})$ for the $B_d - \overline{B}_d$ system and $\lesssim \mathcal{O}(10^{-4})$ for the $B_s - \overline{B}_s$ system [6].

In the approximation of negligible CP violation in the mixing, the ratio $\Delta\Gamma/\Delta m$ is equal to the small quantity $|\Gamma_{12}/M_{12}|$ of Eq. (22); it is hence independent of CKM matrix elements, i.e. the same for the $B_d-\overline{B}_d$ and $B_s-\overline{B}_s$ systems. It can be calculated with lattice QCD techniques; typical results are $\sim 5 \times 10^{-3}$ with quoted uncertainties of 30% at least. Given the current experimental knowledge (discussed below) on the mixing parameter x,

$$\begin{cases} x_d = 0.73 \pm 0.03 & (B_d - \overline{B}_d \text{ system}) \\ x_s \gtrsim 20 \text{ at } 95\% \text{ CL} & (B_s - \overline{B}_s \text{ system}) \end{cases}, \tag{25}$$

the Standard Model thus predicts that $\Delta\Gamma/\Gamma$ is very small for the $B_d-\overline{B}_d$ system (below 1%), but may be quite large for the $B_s-\overline{B}_s$ system (up to $\sim 20\%$). This width difference is caused by the existence of final states to which both the B_q^0 and \overline{B}_q^0 mesons can decay. Such decays involve $b\to c\overline{c}q$ quark-level transitions, which are Cabibbo-suppressed if q=d and Cabibbo-allowed if q=s. If the final states common to B_s^0 and \overline{B}_s^0 are predominantly CP-even as discussed in Ref. 7, then the $B_s-\overline{B}_s$ mass eigenstate with the largest decay width corresponds to the CP-even eigenstate. Taking Eq. (21) into account, one thus expects $\Gamma_{\text{light}}=\Gamma_+$ and

$$\Delta m_s = M_- - M_+ > 0, \quad \Delta \Gamma_s = \Gamma_+ - \Gamma_- > 0.$$
 (26)

Experimental issues and methods for oscillation analyses

Time-integrated measurements of $B^0-\overline{B}^0$ mixing were published for the first time in 1987 by UA1 [8] and ARGUS [9], and since then by many different experiments. These are typically

based on counting same-sign and opposite-sign lepton pairs from the semileptonic decay of the produced $b\bar{b}$ pairs. At high energy colliders, such analyses cannot easily separate the B_d and B_s contributions, therefore experiments at $\Upsilon(4S)$ machines are best suited to measure χ_d .

However, better sensitivity is obtained from time-dependent analyses aimed at the direct measurement of the oscillation frequencies Δm_d and Δm_s , from the proper time distributions of B_d or B_s candidates identified through their decay in (mostly) flavor-specific modes and suitably tagged as mixed or unmixed. This is particularly true for the $B_s - \overline{B}_s$ system where the large value of x_s implies maximal mixing, i.e. $\chi_s \simeq 1/2$. In such analyses, performed at high-energy colliders, the neutral B mesons are either partially reconstructed from a charm meson, or selected from a lepton with high transverse momentum with respect to the b jet, or selected from a reconstructed displaced vertex. The proper time $t = \frac{m_B}{p}L$ is measured from the distance L between the production vertex and the B decay vertex, as measured with a silicon vertex detector, and from an estimate of the B momentum p.

The statistical significance S of an oscillation signal can be approximated as [10]

$$S \approx \sqrt{N/2} f_{\text{sig}} (1 - 2\eta) e^{-(\Delta m \sigma_t)^2/2}, \qquad (27)$$

Created: 6/20/2000 14:10

where N and $f_{\rm sig}$ are the number of candidates and the fraction of signal in the selected sample, η is the mistag probability, and σ_t is the proper time resolution. The quantity \mathcal{S} decreases very quickly as Δm increases; this dependence is controlled by σ_t , which is therefore a critical parameter for Δm_s analyses. The proper time resolution $\sigma_t \sim \frac{m_B}{\langle p \rangle} \sigma_L \oplus t \frac{\sigma_p}{p}$ includes a constant contribution due to the decay length resolution σ_L (typically

0.1–0.3 ps), and a term due to the relative momentum resolution $\frac{\sigma_p}{p}$ (typically 10–20% for partially reconstructed decays), which increases with proper time.

In order to tag a B candidate as mixed or unmixed, it is necessary to determine its flavor state both at production (initial state) and at decay (final state). The initial and final state mistag probabilities, η_i and η_f , degrade \mathcal{S} by a total factor $(1-2\eta)=(1-2\eta_i)(1-2\eta_f)$. In inclusive lepton analyses, the final state is tagged by the charge of the lepton from $b\to \ell^-$ decays; the biggest contribution to η_f is then due to $\overline{b}\to \overline{c}\to \ell^-$ decays. Alternatively, the charge of a reconstructed charm meson $(D^{*-}$ from B_d^0 or D_s^- from B_s^0), or that of a kaon thought to come from a $b\to c\to s$ decay [11], can be used. For fully inclusive analyses based on topological vertexing, final state tagging techniques include jet charge [12] and charge dipole methods [11].

The initial state tags are somewhat less dependent on the procedure used to select B candidates. They can be divided in two groups: the ones that tag the initial charge of the \overline{b} quark contained in the B candidate itself (same-side tag), and the ones that tag the initial charge of the other b quark produced in the event (opposite-side tag). On the same side, the charge of a track from the primary vertex is correlated with the production state of the B if that track is a decay product of a B^{**} state or the first particle in the fragmentation chain [13,14]. Jet charge techniques work on both sides. Finally, the charge of a lepton from $b \to \ell^-$ or of a kaon from $b \to c \to s$ can be used as opposite side tags, keeping in mind that their performance depends on integrated mixing. At SLC, the beam polarization produced a sizeable forward-backward asymmetry in the $Z \to b\bar{b}$ decays and provided another very interesting

and effective initial state tag based on the polar angle of the B candidate [11]. Initial state tags have also been combined to reach $\eta_i \sim 26\%$ at LEP [14,15] or even 16% at SLD [11] with full efficiency. The equivalent figure at CDF is currently $\sim 40\%$ [16].

In the absence of experimental evidence for a width difference, and since $\Delta\Gamma/\Delta m$ is predicted to be very small, oscillation analyses typically neglect $\Delta\Gamma$ and describe the data with the physics functions $\Gamma e^{-\Gamma t} (1 \pm \cos \Delta m t)/2$. As can be seen from Eq. (9), a non zero value of $\Delta\Gamma$ would effectively reduce the oscillation amplitude with a small time-dependent factor that would be very difficult to distinguish from time resolution effects. Whereas measurements of Δm_d are usually extracted from the data using a maximum likelihood fit, no significant B_s - \overline{B}_s oscillations have been seen so far, and all B_s analyses set lower limits on Δm_s . The original technique used to set such limits was to study the likelihood as a function of Δm_s . However, these limits turned out to be difficult to combine. A method was therefore developed [10], in which a B_s oscillation amplitude \mathcal{A} is measured at each fixed value of Δm_s , using a maximum likelihood fit based on the functions $\Gamma_s e^{-\Gamma_s t} (1 \pm A \cos \Delta m_s t)/2$. To a very good approximation, the statistical uncertainty on \mathcal{A} is Gaussian and equal to $1/\mathcal{S}$ [10]. Measurements of \mathcal{A} performed at a given value of Δm_s can be averaged easily. If $\Delta m_s = \Delta m_s^{\text{true}}$, one expects $\mathcal{A} = 1$ within the total uncertainty $\sigma_{\mathcal{A}}$; however, if Δm_s is far from its true value, a measurement consistent with A = 0 is expected. A value of Δm_s can be excluded at 95% CL if $\mathcal{A} + 1.645 \, \sigma_{\mathcal{A}} \leq 1$. If Δm_s^{true} is very large, one expects $\mathcal{A}=0$, and all values of Δm_s such that $1.645 \, \sigma_{\mathcal{A}}(\Delta m_s) < 1$ are expected to be excluded at 95% CL. Because of the proper time resolution, the

quantity $\sigma_{\mathcal{A}}(\Delta m_s)$ is an increasing function of Δm_s and one therefore expects to be able to exclude individual Δm_s values up to Δm_s^{sens} , where Δm_s^{sens} , called here the sensitivity of the analysis, is defined by $1.645 \sigma_{\mathcal{A}}(\Delta m_s^{\text{sens}}) = 1$.

B_d mixing studies

Many $B_d - \overline{B}_d$ oscillations analyses have been performed by the ALEPH [17,12], CDF [13,18], DELPHI [19], L3 [20], OPAL [21] and SLD [11] collaborations. Although a variety of different techniques have been used, the Δm_d results have remarkably similar precision. The systematic uncertainties are not negligible; they are often dominated by sample composition, mistag probability, or b-hadron lifetime contributions. Before being combined, the measurements are adjusted on the basis of a common set of input values, including the b-hadron lifetimes and fractions published in this Review. Some measurements are statistically correlated. Systematic correlations arise both from common physics sources (fragmentation fractions, lifetimes, branching ratios of b hadrons), and from purely experimental or algorithmic effects (efficiency, resolution, tagging, background description). Combining all published measurements [17,13,19,20,21] and accounting for all identified correlations as described in Ref. 22 yields $\Delta m_d = 0.478 \pm 0.012 \text{(stat)} \pm 0.013 \text{(syst)} \text{ ps}^{-1}.$

On the other hand, ARGUS and CLEO have published timeintegrated measurements based on semileptonic decays [23,24], which average to $\chi_d^{\Upsilon(4S)} = 0.156 \pm 0.024$. The width difference $\Delta\Gamma_d$ could in principle be extracted from the measured value of Γ_d , and the above averages for Δm_d and χ_d (see Eqs. (12) and (17)). The results are however compatible with $\Delta\Gamma_d = 0$, and their precision is still insufficient to provide an interesting

constraint. Neglecting $\Delta\Gamma_d$ and using the measured B_d lifetime, the Δm_d and χ_d results are combined to yield the world average

$$\Delta m_d = 0.472 \pm 0.017 \text{ ps}^{-1}$$
 (28)

or, equivalently,

$$\chi_d = 0.174 \pm 0.009. \tag{29}$$

Evidence for CP violation in B_d mixing has been searched for, both with semileptonic and inclusive B_d decays, in samples where the initial flavor state is tagged. In the semileptonic case, where the final state tag is also available, the following asymmetry

$$\frac{N(\overline{B}_d^0(t) \to \ell^+ \nu_\ell X) - N(B_d^0(t) \to \ell^- \overline{\nu}_\ell X)}{N(\overline{B}_d^0(t) \to \ell^+ \nu_\ell X) + N(B_d^0(t) \to \ell^- \overline{\nu}_\ell X)}$$

$$= a_{CP} \simeq 1 - |q/p|_d^2 \simeq \frac{4 \text{Re}(\epsilon_d)}{1 + |\epsilon_d|^2} \tag{30}$$

has been measured, either in time-integrated analyses at CLEO [24] and CDF [25], or in more recent and sensitive time-dependent analyses at LEP [26,27,28]. In the inclusive case, also investigated at LEP [29,27,30], no final state tag is used, and the asymmetry [31]

$$\frac{N(B_d^0(t) \to \text{all}) - N(\overline{B}_d^0(t) \to \text{all})}{N(B_d^0(t) \to \text{all}) + N(\overline{B}_d^0(t) \to \text{all})}$$

$$\simeq a_{CP} \left[\frac{x_d}{2} \sin(\Delta m_d t) - \sin^2\left(\frac{\Delta m_d t}{2}\right) \right] \tag{31}$$

must be measured as a function of the proper time to extract information on CP violation. In all cases asymmetries compatible with zero have been found, with a precision limited by the available statistics. A simple average of all published and preliminary results [24–30] neglecting small possible statistical

correlations and assuming half of the systematics to be correlated, is $a_{CP} = -0.017 \pm 0.016$, a result which does not yet constrain the Standard Model.

The Δm_d result of Eq. (28) provides an estimate of $|M_{12}|$ and can be used, together with Eqs. (16) and (18), to extract the modulus of the CKM matrix element V_{td} within the Standard Model [32]. The main experimental uncertainties on the resulting estimate of $|V_{td}|$ come from m_t and Δm_d ; however, these are at present completely dominated by the 15–20% uncertainty usually quoted on the hadronic matrix element $f_{B_d}\sqrt{B_{B_d}} \sim 200$ MeV obtained from lattice QCD calculations [33].

B_s mixing studies

 $B_s-\overline{B}_s$ oscillation has been the subject of many recent studies from ALEPH [14], CDF [34], DELPHI [35,15], OPAL [36] and SLD [37]. No oscillation signal has been found so far. The most sensitive analyses appear to be the ones based on inclusive lepton samples, and on samples where a lepton and a D_s meson have been reconstructed in the same jet. All results are limited by the available statistics. These are combined to yield the amplitudes \mathcal{A} shown in Fig. 1 as a function of Δm_s [22].

As before, the individual results have been adjusted to common physics inputs, and all known correlations have been accounted for; furthermore, the sensitivities of the inclusive analyses, which depend directly through Eq. (27) on the assumed fraction f_s of B_s mesons in an unbiased sample of weakly-decaying b hadrons, have been rescaled to a common value of $f_s = 0.100 \pm 0.012$ [22]. The combined sensitivity for 95% CL exclusion of Δm_s values is found to be 14.5 ps⁻¹. All values of Δm_s below 14.3 ps⁻¹ are excluded at 95% CL, and no

Figure 1: Combined measurements of the B_s oscillation amplitude as a function of Δm_s [22], including all preliminary results available at the end of 1999. The measurements are dominated by statistical uncertainties. Neighboring points are statistically correlated.

deviation from $\mathcal{A} = 0$ is seen in Fig. 1 that would indicate the observation of a signal.

Some Δm_s analyses are still preliminary [15,37]. Using only published results, the combined Δm_s result is

$$\Delta m_s > 10.6 \text{ ps}^{-1} \quad \text{at } 95\% \text{ CL},$$
 (32)

with a sensitivity of 12.1 ps^{-1} .

The information on $|V_{ts}|$ obtained, in the framework of the Standard Model, from the combined limit is hampered by the hadronic uncertainty, as in the B_d case. However, many uncertainties cancel in the frequency ratio

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \left| \frac{V_{ts}}{V_{td}} \right|^2 \,, \tag{33}$$

where $\xi = (f_{Bs}\sqrt{B_{Bs}})/(f_{Bd}\sqrt{B_{Bd}})$, of order unity, is currently estimated from lattice QCD with a 5–6% uncertainty [33]. The CKM matrix can be constrained using the experimental results on Δm_d , Δm_s , $|V_{ub}/V_{cb}|$ and ϵ_K , together with theoretical inputs and unitarity conditions [32]. Given the information available from $|V_{ub}/V_{cb}|$ and ϵ_K measurements, the constraint from our knowledge on the ratio $\Delta m_d/\Delta m_s$ is presently more effective in limiting the position of the apex of the CKM unitarity triangle than the one obtained from the Δm_d measurements alone, due to the reduced hadronic uncertainty in Eq. (33). We note also that the Standard Model would not easily accommodate values of Δm_s above $\sim 25~{\rm ps}^{-1}$.

Information on $\Delta\Gamma_s$ can be obtained by studying the proper time distribution of untagged data samples enriched in B_s mesons [38]. In the case of an inclusive B_s selection [39] or a semileptonic B_s decay selection [40,41], both the shortand long-lived components are present, and the proper time distribution is a superposition of two exponentials with decay constants $\Gamma_s \pm \Delta\Gamma_s/2$. In principle, this provides sensitivity to

both Γ_s and $(\Delta\Gamma_s/\Gamma_s)^2$. Ignoring $\Delta\Gamma_s$ and fitting for a single exponential leads to an estimate of Γ_s with a relative bias proportional to $(\Delta\Gamma_s/\Gamma_s)^2$. An alternative approach, which is directly sensitive to first order in $\Delta\Gamma_s/\Gamma_s$, is to determine the lifetime of B_s candidates decaying to CP eigenstates; measurements already exist for $B_s^0 \to J/\psi \phi$ [42] and $B_s^0 \to D_s^{(*)+}D_s^{(*)-}$ [43], which are mostly CP-even states [7]. An estimate of $\Delta\Gamma_s/\Gamma_s$ has also been obtained directly from a measurement of the $B_s^0 \to D_s^{(*)+}D_s^{(*)-}$ branching ratio [43], under the assumption that these decays practically account for all the CP-even final states.

Present data is not precise enough to efficiently constrain both Γ_s and $\Delta\Gamma_s/\Gamma_s$; since the B_s and B_d lifetimes are predicted to be equal within less than a percent [44], an expectation compatible with the current experimental data [45], the constraint $\Gamma_s = \Gamma_d$ can also be used to extract $\Delta\Gamma_s/\Gamma_s$. Applying the combination procedure described in Ref. 22 on the published B_s lifetime results [40,42,46] yields

$$\Delta\Gamma_s/\Gamma_s < 0.65$$
 at 95% CL (34)

without external constraint, or

$$\Delta\Gamma_s/\Gamma_s < 0.33$$
 at 95% CL (35)

Created: 6/20/2000 14:10

when constraining $1/\Gamma_s$ to the measured B_d lifetime. These results are not yet precise enough to test Standard Model predictions.

$Average \,b\hbox{-}hadron\,mixing\,and\,b\hbox{-}hadron\,production\,fractions$

Let f_u , f_d , f_s and f_{baryon} be the B_u , B_d , B_s and b-baryon fractions composing an unbiased sample of weakly-decaying b hadrons produced in high energy colliders. LEP

experiments have measured $f_s \times \text{BR}(B_s^0 \to D_s^- \ell^+ \nu_\ell X)$ [47], $\text{BR}(b \to A_b^0) \times \text{BR}(A_b^0 \to A_c^+ \ell^- \overline{\nu}_\ell X)$ [48] and $\text{BR}(b \to \Xi_b^-) \times \text{BR}(\Xi_b^- \to \Xi^- \ell^- \overline{\nu}_\ell X)$ [49] from partially reconstructed final states including a lepton, f_{baryon} from protons identified in b events [50], and the production rate of charged b hadrons [51]. The various b hadron fractions have also been measured at CDF from electron-charm final states [52]. All the published results have been combined following the procedure and assumptions described in Ref. 22, to yield $f_u = f_d = (38.4 \pm 1.8)\%$, $f_s = (11.7 \pm 3.0)\%$ and $f_{\text{baryon}} = (11.5 \pm 2.0)\%$ under the constraints

$$f_u = f_d$$
 and $f_u + f_d + f_s + f_{\text{baryon}} = 1$. (36)

Time-integrated mixing analyses performed with lepton pairs from $b\bar{b}$ events produced at high energy colliders measure the quantity

$$\overline{\chi} = f_d' \chi_d + f_s' \chi_s \,, \tag{37}$$

where f'_d and f'_s are the fractions of B_d and B_s hadrons in a sample of semileptonic b-hadron decays. Assuming that all b hadrons have the same semileptonic decay width implies $f'_q = f_q/(\Gamma_q \tau_b)$ (q = s, d), where τ_b is the average b-hadron lifetime. Hence $\overline{\chi}$ measurements can be used to improve our knowledge on the fractions f_u , f_d , f_s and f_{baryon} .

Combining the above estimates of these fractions with the average $\overline{\chi} = 0.118 \pm 0.005$ (published in this *Review*), χ_d from Eq. (29) and $\chi_s = \frac{1}{2}$ yields, under the constraints of Eq. (36),

$$f_u = f_d = (38.9 \pm 1.3)\%,$$
 (38)

$$f_s = (10.7 \pm 1.4)\%, \tag{39}$$

$$f_{\text{baryon}} = (11.6 \pm 2.0)\%,$$
 (40)

showing that mixing information substantially reduces the uncertainty on f_s . These results and the averages quoted in Eqs. (28) and (29) for χ_d and Δm_d have been obtained in a consistent way by the B oscillations working group [22], taking into account the fact that many individual measurements of Δm_d depend on the assumed values for the b-hadron fractions.

Summary and prospects

 $B^0-\overline{B}{}^0$ mixing has been a field of intense study in the last few years. The mass difference in the $B_d-\overline{B}_d$ system is very well measured (with an accuracy of $\sim 3.5\%$) but, despite an impressive theoretical effort, the hadronic uncertainty still limits the precision of the extracted estimate of $|V_{td}|$. The mass difference in the $B_s-\overline{B}_s$ system is much larger and still unmeasured. However, the current experimental lower limit on Δm_s already provides, together with Δm_d , a significant constraint on the CKM matrix within the Standard Model. No strong experimental evidence exists yet for the rather large decay width difference expected in the $B_s-\overline{B}_s$ system. It is interesting to recall that the ratio $\Delta\Gamma_s/\Delta m_s$ does not depend on CKM matrix elements in the Standard Model (see Eq. (22)), and that a measurement of either Δm_s or $\Delta\Gamma_s$ could be turned into a Standard Model prediction of the other one.

The LEP and SLD experiments have still not finalized all their B_s oscillation analyses, but a measurement of Δm_s from data collected at the Z pole becomes unlikely. In the near future, the most promising prospects for B_s mixing are from Run II at the Tevatron, where both Δm_s and $\Delta \Gamma_s$ are expected to be measured; CDF will be able to observe B_s oscillations for values of Δm_s up to ~ 40 ps⁻¹ [53], well above the current Standard Model prediction.

CP violation in B mixing, which has not been seen yet, as well as the phases involved in B mixing, will be further investigated with the large statistics that will become available both at the B factories and at the Tevatron.

B mixing may not have delivered all its secrets yet, because it is one of the phenomena where new physics might very well reveal itself (for example new particles involved in the box diagrams). Theoretical calculations in lattice QCD are becoming more reliable and further progress in reducing hadronic uncertainties is expected. In the long term, a stringent check of the consistency, within the Standard Model, of the B_d and B_s mixing measurements with all other measured observables in B physics (including CP asymmetries in B decays) will be possible, allowing to place limits on new physics or, better, discover new physics.

References

- 1. T.D. Lee and C.S. Wu, Ann. Rev. Nucl. Sci. **16**, 511 (1966);
 - I.I. Bigi and A.I. Sanda, "CP violation," Cambridge, Cambridge Univ. Press, 2000;
 - G.C. Branco, L. Lavoura, and J.P. Silva, "CP violation," Clarendon Press Oxford, 1999;
 - see also the review on $B^0-\overline{B}^0$ mixing by H. Quinn in C. Caso *et al.*, Eur. Phys. J. **C3**, 1 (1998).
- 2. See the review on CP violation in B decays by H. Quinn and A. Sanda in this publication.
- 3. A.J. Buras, W. Slominski, and H. Steger, Nucl. Phys. **B245**, 369 (1984).
- 4. A.J. Buras and R. Fleischer, in "Heavy Flavours II," ed. A.J. Buras and M. Lindner, Singapore World Scientific (1998).
- 5. M. Kobayashi and K. Maskawa, Prog. Theor. Phys. **49**, 652 (1973).

- 6. I.I. Bigi *et al.*, in "*CP* violation," ed. C. Jarlskog, Singapore World Scientific, 1989.
- 7. R. Aleksan *et al.*, Phys. Lett. **B316**, 567 (1993).
- 8. C. Albajar *et al.*, **UA1** Collab., Phys. Lett. **B186**, 247 (1987).
- 9. H. Albrecht *et al.*, **ARGUS** Collab., Phys. Lett. **B192**, 245 (1987).
- 10. H.-G. Moser and A. Roussarie, Nucl. Instrum. Methods **384**, 491 (1997).
- 11. **SLD** Collab., SLAC-PUB-7228, SLAC-PUB-7229, SLAC-PUB-7230, contrib. to 28th Int. Conf. on High Energy Physics, Warsaw, 1996.
- 12. **ALEPH** Collab., contrib. 596 to Int. Europhysics Conf. on High Energy Physics, Jerusalem, 1997.
- F. Abe et al., CDF Collab., Phys. Rev. Lett. 80, 2057 (1998), Phys. Rev. D59, 032001 (1999) Phys. Rev. D60, 051101 (1999); Phys. Rev. D60, 072003 (1999);
 T. Affolder et al., CDF Collab., Phys. Rev. D60, 112004 (1999).
- 14. R. Barate *et al.*, **ALEPH** Collab., Eur. Phys. J. **C4**, 367 (1998); Eur. Phys. J. **C7**, 553 (1999).
- 15. **DELPHI** Collab., contrib. 4_520 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999; contrib. 236 to 29th Int. Conf. on High Energy Physics, Vancouver, 1998.
- 16. M. Paulini, private communication.
- 17. D. Buskilic *et al.*, **ALEPH** Collab., Z. Phys. **C75**, 397 (1997).
- 18. **CDF** Collab., www-cdf.fnal.gov/physics/new/bottom/bottom.html.
- 19. P. Abreu *et al.*, **DELPHI** Collab., Z. Phys. **C76**, 579 (1997).
- 20. M. Acciarri *et al.*, **L3** Collab., Eur. Phys. J. **C5**, 195 (1998).
- 21. G. Alexander *et al.*, **OPAL** Collab., Z. Phys. **C72**, 377 (1996);

- K. Ackerstaff *et al.*, **OPAL** Collab., Z. Phys. **C76**, 401 (1997); Z. Phys. **C76**, 417 (1997).
- 22. ALEPH, CDF, DELPHI, L3, OPAL, and SLD Collab., "Combined results on b-hadron production rates, lifetimes, oscillations, and semileptonic decays," LEPHFS note 99-02, to be subm. as CERN-EP preprint; the combined results on B mixing and b hadron fractions included in the above paper or published in this Review have been obtained by the B oscillations working group; see http://www.cern.ch/LEPBOSC/ for more information.
- 23. H. Albrecht *et al.*, **ARGUS** Collab., Z. Phys. **C55**, 357 (1992); Phys. Lett. **B324**, 249 (1994).
- 24. J. Bartelt *et al.*, **CLEO** Collab., Phys. Rev. Lett. **71**, 1680 (1993).
- 25. F. Abe et al., CDF Collab., Phys. Rev. D55, 2546 (1997).
- 26. K. Ackerstaff *et al.*, **OPAL** Collab., Z. Phys. **C76**, 401 (1997).
- 27. **DELPHI** Collab., conf. note 97-98, contrib. 449 to Int. Europhysics Conf. on High Energy Physics, Jerusalem, 1997.
- 28. **ALEPH** Collab., conf. note 99-026, contrib. 4_421 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- 29. G. Abbiendi *et al.*, **OPAL** Collab., Eur. Phys. J. **C12**, 609 (2000).
- 30. **ALEPH** Collab., conf. note 98-032, contrib. 4_396 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- 31. M. Beneke, G. Buchalla, and I. Dunietz, Phys. Lett. B393, 132 (1997);
 I. Dunietz, Eur. Phys. J. C7, 197 (1999).
- 32. See the review on the CKM quark-mixing matrix by F.J. Gilman, K. Kleinknecht and B. Renk in this publication.
- 33. S. Aoki, talk at 19th Int. Symp. on Lepton and Photon Interactions, Stanford, 1999, hep-ph/9912288;

- P. Ball $et\ al.$, " $B\ decays$ at the LHC," hep-ph/0003238 and CERN-TH/2000-101, to appear in the proceedings of the 1999 workshop on Standard Model physics at the LHC, CERN.
- 34. F. Abe *et al.*, **CDF** Collab., Phys. Rev. Lett. **82**, 3576 (1999).
- 35. W. Adam *et al.*, **DELPHI** Collab., Phys. Lett. **B414**, 382 (1997).
- 36. G. Abbiendi *et al.*, **OPAL** Collab., Eur. Phys. J. **C11**, 587 (1999).
- 37. **SLD** Collab., SLAC-PUB-8225, contrib. to 19th Int. Symp. on Lepton and Photon Interactions, Stanford, 1999.
- 38. K. Hartkorn and H.-G. Moser, Eur. Phys. J. **C8**, 381 (1999).
- 39. M. Acciarri *et al.*, **L3** Collab., Phys. Lett. **B438**, 417 (1998).
- 40. F. Abe *et al.*, **CDF** Collab., Phys. Rev. **D59**, 032004 (1999).
- 41. **DELPHI** Collab., contrib. 4_520 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- 42. F. Abe et al., CDF Collab., Phys. Rev. D57, 5382 (1998).
- 43. R. Barate *et al.*, **ALEPH** Collab., CERN-EP/2000-036, Feb. 2000, subm. to Phys. Lett. B.
- 44. See for example M. Beneke, G. Buchalla, and I. Dunietz, Phys. Rev. **D54**, 4419 (1996).
- 45. See the review on production and decay of b-hadrons by L. Gibbons and K. Honscheid in this publication.
- 46. D. Buskulic *et al.*, **ALEPH** Collab., Phys. Lett. **B377**, 205 (1996);
 - P. Abreu *et al.*, **DELPHI** Collab., Z. Phys. **C71**, 11 (1996);
 - K. Ackerstaff *et al.*, **OPAL** Collab., Phys. Lett. **B426**, 161 (1998).

47. P. Abreu *et al.*, **DELPHI** Collab., Phys. Lett. **B289**, 199 (1992);

- P.D. Acton *et al.*, **OPAL** Collab., Phys. Lett. **B295**, 357 (1992);
- D. Buskulic *et al.*, **ALEPH** Collab., Phys. Lett. **B361**, 221 (1995).
- 48. P. Abreu *et al.*, **DELPHI** Collab., Z. Phys. **C68**, 375 (1995);
 - R. Barate *et al.*, **ALEPH** Collab., Eur. Phys. J. **C2**, 197 (1998).
- 49. P. Abreu *et al.*, **DELPHI** Collab., Z. Phys. **C68**, 541 (1995);
 - D. Buskulic *et al.*, **ALEPH** Collab., Phys. Lett. **B384**, 449 (1996).
- 50. R. Barate *et al.*, **ALEPH** Collab., Eur. Phys. J. **C5**, 205 (1998).
- 51. **DELPHI** Collab., contrib. 5_515 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
- 52. F. Abe *et al.*, **CDF** Collab., Phys. Rev. **D60**, 092005 (1999);
 - T. Affolder *et al.*, **CDF** Collab., Phys. Rev. Lett. **84**, 1663 (2000).
- 53. **CDF** Collab., "Update to Proposal P-909: physics performance of the CDF II detector with an inner silicon layer and a time-of-flight detector," Jan. 1999; see www-cdf.fnal.gov/upgrades/btb_update_jan99.ps.

$B^0-\overline{B}^0$ MIXING PARAMETERS

For a discussion of $B^0 - \overline{B}{}^0$ mixing see the note on " $B^0 - \overline{B}{}^0$ Mixing" in the B^0 Particle Listings above.

 χ_d is a measure of the time-integrated B^0 - \overline{B}^0 mixing probability that a produced $B^0(\overline{B}^0)$ decays as a $\overline{B}^0(B^0)$. Mixing violates $\Delta B \neq 2$ rule.

$$\chi_d = \frac{x_d^2}{2(1+x_d^2)}$$

$$x_d = \frac{\Delta m_{B^0}}{\Gamma_{B^0}} = (m_{B_H^0} - m_{B_L^0}) \tau_{B^0},$$

Created: 6/20/2000 14:10

where H, L stand for heavy and light states of two B^0 CP eigenstates and $\tau_{B^0} = \frac{1}{0.5(\Gamma_{B^0_H} + \Gamma_{B^0_I})}$.

 χ_d

This B^0 - \overline{B}^0 mixing parameter is the probability (integrated over time) that a produced B^0 (or \overline{B}^0) decays as a \overline{B}^0 (or B^0), e.g. for inclusive lepton decays

$$\chi_d = \Gamma(B^0 \to \ell^- X \text{ (via } \overline{B}^0)) / \Gamma(B^0 \to \ell^{\pm} X)$$

= $\Gamma(\overline{B}^0 \to \ell^+ X \text{ (via } B^0)) / \Gamma(\overline{B}^0 \to \ell^{\pm} X)$

Where experiments have measured the parameter $r = \chi/(1-\chi)$, we have converted to χ . Mixing violates the $\Delta B \neq 2$ rule.

Note that the measurement of χ at energies higher than the $\Upsilon(4S)$ have not separated χ_d from χ_s where the subscripts indicate $B^0(\overline{b}d)$ or $B_s^0(\overline{b}s)$. They are listed in the $B_s^0 - \overline{B}_s^0$ MIXING section.

The experiments at $\varUpsilon(4S)$ make an assumption about the $B^0\,\overline B{}^0$ fraction and about the ratio of the B^{\pm} and B^{0} semileptonic branching ratios (usually that it equals one).

OUR EVALUATION, provided by the LEP B Oscillation Working Group, includes χ_d calculated from Δm_{R^0} and τ_{R^0} .

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
0.174±0.009 OUR NEW	EVAL	JATION $[0.172 \pm$	0.010 OUR 1	1998 EVALUATION]
0.156±0.024 OUR AVER/	AGE			
$0.16\ \pm0.04\ \pm0.04$		³¹⁴ ALBRECHT	94 ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$
$0.149\!\pm\!0.023\!\pm\!0.022$		³¹⁵ BARTELT	93 CLE2	$e^+e^- ightarrow \gamma(4S)$
0.171 ± 0.048		³¹⁶ ALBRECHT	92L ARG	$e^+e^- ightarrow \gamma(4S)$
ullet $ullet$ We do not use the fol	lowing	data for averages, f	fits, limits, et	C. ● ●
$0.20\ \pm0.13\ \pm0.12$		317 ALBRECHT	96D ARG	$e^+e^- ightarrow~ \varUpsilon$ (4S)
$0.19\ \pm0.07\ \pm0.09$		³¹⁸ ALBRECHT	96D ARG	$e^+e^- \rightarrow \Upsilon(4S)$
0.24 ± 0.12		³¹⁹ ELSEN		$e^{+}e^{-}$ 35–44 GeV
$0.158 ^{igoplus 0.052}_{-0.059}$		ARTUSO	89 CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.17\ \pm0.05$		³²⁰ ALBRECHT	87ı ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 0.19	90	³²¹ BEAN	87B CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
< 0.27	90	³²² AVERY	84 CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
314 ALDDEGUT 04	0.10	4 0 000 0 054		

 $^{^{314}}$ ALBRECHT 94 reports r= $0.194 \pm 0.062 \pm 0.054$. We convert to χ for comparison. Uses tagged events (lepton + pion from D^*).

 $^{^{315}}$ BARTELT 93 analysis performed using tagged events (lepton+pion from D^*). Using dilepton events they obtain 0.157 \pm 0.016 $^{+0.033}_{-0.028}$

 $^{^{316}}$ ALBRECHT 92L is a combined measurement employing several lepton-based techniques. It uses all previous ARGUS data in addition to new data and therefore supersedes AL-BRECHT 871. A value of $r=20.6\pm7.0\%$ is directly measured. The value can be used to measure x = $\Delta M/\Gamma = 0.72 \pm 0.15$ for the B_d meson. Assumes $f_{+-}/f_0 = 1.0 \pm 0.05$ and uses $\tau_{B^{\pm}}/\tau_{B^0} = (0.95 \pm 0.14) (f_{+-}/f_0)$.

³¹⁷ Uses $D^{*+}K^{\pm}$ correlations. 318 Uses $(D^{*+}\ell^{-})K^{\pm}$ correlations.

 $^{^{319}}$ These experiments see a combination of B_s and B_d mesons.

 $^{^{320}}$ ALBRECHT 871 is inclusive measurement with like-sign dileptons, with tagged B decays plus leptons, and one fully reconstructed event. Measures r=0.21 \pm 0.08. We convert to χ for comparison. Superseded by ALBRECHT 92L.

 $^{^{321}\,\}mathrm{BEAN}$ 87B measured r<~ 0.24; we converted to $\chi.$

 $^{^{322}}$ Same-sign dilepton events. Limit assumes semileptonic BR for B^+ and B^0 equal. If B^0/B^{\pm} ratio <0.58, no limit exists. The limit was corrected in BEAN 87B from r< 0.30 to r< 0.37. We converted this limit to χ .

$\Delta m_{B^0} = m_{B^0_H} - m_{B^0_L}$

HTTP://PDG.LBL.GOV

 $\Delta m_{B_s^0}$ is a measure of 2π times the B^0 - $\overline B^0$ oscillation frequency in time-dependent mixing experiments.

The second "OUR EVALUATION" (0.478 \pm 0.018) is an average of the data listed below performed by the LEP B Oscillation Working Group as described in our "Review of $B - \overline{B}$ Mixing" in the B^0 Section of these Listings. The averaging procedure takes into account correlations between the measurements.

The first "OUR EVALUATION" (0.472 \pm 0.017), also provided by the LEP B Oscillation Working Group, includes Δm_d calculated from χ_d measured at $\Upsilon(4S)$.

```
VALUE (10^{12} h s^{-1})
                                             DOCUMENT ID
                            EVTS
                                                                  TECN COMMENT
0.472 \pm 0.017 OUR NEW EVALUATION [(0.470 \pm 0.019) \times 10^{12} \text{ } h \text{ s}^{-1} \text{ OUR } 1998]
                                              EVALUATION]
0.478 \pm 0.018 OUR NEW EVALUATION [(0.470 \pm 0.019) \times 10 ^{12} \hbar s ^{-1} OUR 1998
                                             EVALUATION]
                                 [(0.467 \pm 0.015) 	imes 10<sup>12</sup> \hbar s<sup>-1</sup> OUR 1998 AVERAGE]
Average is meaningless.
                                        323 ABE
                                                                                p\overline{p} at 1.8 TeV
0.503 \pm 0.064 \pm 0.071
                                                                 99K CDF
                                        324 ABE
0.500 \pm 0.052 \pm 0.043
                                                                                p\overline{p} at 1.8 TeV
                                                                 99Q CDF
0.516\!\pm\!0.099\!+\!0.029\\-0.035
                                        <sup>325</sup> AFFOLDER
                                                                 99c CDF
                                                                                p\overline{p} at 1.8 TeV
0.471 ^{+\, 0.078\, +\, 0.033}_{-\, 0.068\, -\, 0.034}
                                        326 ABE
                                                                 98C CDF
                                                                                p\overline{p} at 1.8 TeV
                                        <sup>327</sup> ACCIARRI
                                                                                 e^+e^- \rightarrow Z
                                                                 98D L3
0.458 \pm 0.046 \pm 0.032
                                        <sup>328</sup> ACCIARRI
                                                                 98D L3
                                                                                e^+e^- \rightarrow Z
0.437 \pm 0.043 \pm 0.044
                                        <sup>329</sup> ACCIARRI
                                                                 98D L3
0.472 \pm 0.049 \pm 0.053
                                        330 ABREU
                                                                 97N DLPH e^+e^- \rightarrow Z
0.523 \pm 0.072 \pm 0.043
                                        <sup>328</sup> ABREU
                                                                 97N DLPH e^+e^- \rightarrow Z
0.493 \pm 0.042 \pm 0.027
                                        <sup>331</sup> ABREU
                                                                 97N DLPH e^+e^- \rightarrow Z
0.499 \pm 0.053 \pm 0.015
                                        <sup>327</sup> ABREU
0.480 \pm 0.040 \pm 0.051
                                                                 97N DLPH e^+e^- \rightarrow Z
0.444 \pm 0.029 + 0.020
                                        <sup>328</sup> ACKERSTAFF 97∪ OPAL
0.430\!\pm\!0.043\!+\!0.028\atop-0.030
                                        ^{327} ACKERSTAFF 97V OPAL e^+e^- 
ightarrow Z
                                        <sup>332</sup> BUSKULIC
                                                                 97D ALEP
0.482 \pm 0.044 \pm 0.024
                                        328 BUSKULIC
                                                                 97D ALEP
0.404 \pm 0.045 \pm 0.027
                                        327 BUSKULIC
                                                                 97D ALEP
0.452 \pm 0.039 \pm 0.044
                                        ^{333} ALEXANDER 96V OPAL \,e^+\,e^-
ightarrow\,Z
0.539 \pm 0.060 \pm 0.024
0.567\!\pm\!0.089\!+\!0.029\\-0.023
                                        <sup>334</sup> ALEXANDER
                                                                96V OPAL e^+e^- \rightarrow Z
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                        <sup>335</sup> ACCIARRI
                                                                 98D L3
                                                                                e^+e^- \rightarrow Z
0.444 \pm 0.028 \pm 0.028
                                        336 ABREU
                                                                 97N DLPH e^+e^- \rightarrow Z
0.497 \pm 0.035
0.467\!\pm\!0.022\!+\!0.017\atop-0.015
                                        ^{337} ACKERSTAFF 97V OPAL \,e^{+}\,e^{-}
ightarrow\,Z
                                        338 BUSKULIC
0.446 \pm 0.032
                                                                 97D ALEP e^+e^- \rightarrow Z
0.531^{\,+\,0.050}_{\,-\,0.046}\,{\pm}\,0.078
                                        339 ABREU
                                                                 96Q DLPH Sup. by ABREU 97N
0.496 ^{\,+\, 0.055}_{\,-\, 0.051} \pm 0.043
                                        <sup>327</sup> ACCIARRI
                                                                 96E L3
                                                                                Repl. by ACCIARRI 98D
0.548 \pm 0.050 \, {+}\, 0.023 \\ -0.019
                                        ^{340} ALEXANDER 96V OPAL e^+e^- \rightarrow Z
```

Page 69

0.496 ± 0.046		³⁴¹ AKERS	95J OPAL	Repl. by ACKER- STAFF 97V
$0.462 {}^{+ 0.040 + 0.052}_{- 0.053 - 0.035}$		327 AKERS	95J OPAL	Repl. by ACKER- STAFF 97V
$0.50\ \pm0.12\ \pm0.06$		³³⁰ ABREU	94M DLPH	Sup. by ABREU 97N
$0.508 \pm 0.075 \pm 0.025$		³³³ AKERS	94c OPAL	Repl. by ALEXAN-
$0.57 \pm 0.11 \pm 0.02$	153	³³⁴ AKERS	94н OPAL	DER 96V Repl. by ALEXAN- DER 96V
$0.50 \begin{array}{l} +0.07 & +0.11 \\ -0.06 & -0.10 \end{array}$		³²⁷ BUSKULIC	94B ALEP	Sup. by BUSKULIC 97D
$0.52 \begin{array}{l} +0.10 & +0.04 \\ -0.11 & -0.03 \end{array}$		³³⁴ BUSKULIC	93K ALEP	Sup. by BUSKULIC 97D
323				

³²³ Uses di-muon events.

331 Uses
$$\pi_s^{\pm} \ell$$
- Q_{hem} .

$x_d = \Delta m_{B^0} / \Gamma_{B^0}$

The second "OUR EVALUATION" (0.740 \pm 0.031) is an average of the data listed in Δm_{B^0} section performed by the LEP B Oscillation Working Group as described in our "Review of B- \overline{B} Mixing" in the B^0 Section of these Listings. The averaging procedure takes into account correlations between the measurements.

The first "OUR EVALUATION" (0.730 \pm 0.029), also provided by the LEP B Oscillation Working Group, includes χ_d measured at $\Upsilon(4S)$.

VALUE DOCUMENT ID

0.730 \pm 0.029 OUR NEW EVALUATION [0.734 \pm 0.035 OUR 1998 EVALUATION] **0.740 \pm 0.031 OUR NEW EVALUATION** [0.734 \pm 0.035 OUR 1998 EVALUATION]

³²⁴ Uses jet-charge and lepton-flavor tagging.

³²⁵ Uses $\ell^- D^{*+} - \ell$ events.

 $^{^{326}}$ Uses π -B in the same side.

³²⁷ Uses ℓ - ℓ .

³²⁸ Uses ℓ - Q_{hem} .

 $^{329\, \}text{Uses} \ \ell\text{-}\ell$ with impact parameters.

 $^{330 \, \}mathrm{Uses} \, D^{*\pm} - Q_{\mathrm{hem}}$

³³² Uses $D^{*\pm}$ - ℓ/Q_{hem}

 $^{^{333}}$ Uses $D^{*\pm}\ell$ - Q_{hem} .

³³⁴ Uses $D^{*\pm}$ - ℓ .

³³⁵ ACCIARRI 98D combines results from ℓ - ℓ , ℓ - Q_{hem} , and ℓ - ℓ with impact parameters.

³³⁶ ABREU 97N combines results from $D^{*\pm}$ - Q_{hem} , ℓ - Q_{hem} , π_s^{\pm} ℓ - Q_{hem} , and ℓ - ℓ .

³³⁷ ACKERSTAFF 97V combines results from ℓ - ℓ , ℓ - $Q_{\rm hem}$, D^* - ℓ , and $D^{*\pm}$ - $Q_{\rm hem}$.

³³⁸ BUSKULIC 97D combines results from $D^{*\pm}$ - $\ell/Q_{
m hem}$, ℓ - $Q_{
m hem}$, and ℓ - ℓ .

 $^{^{339}\,\}mathrm{ABREU}$ 96Q analysis performed using lepton, kaon, and jet-charge tags.

³⁴⁰ ALEXANDER 96V combines results from $D^{*\pm}$ - ℓ and $D^{*\pm}$ ℓ - Q_{hem} .

³⁴¹ AKERS 95J combines results fromt charge measurement, $D^{*\pm}\ell$ - $Q_{
m hem}$ and ℓ - ℓ .

CP VIOLATION IN B DECAY – STANDARD MODEL PREDICTIONS

Revised January 2000 by H. Quinn (SLAC) and A.I. Sanda (Nagoya University).

With the commissioning of the asymmetric B Factories at KEKB and PEP II, and of CESR III and with the completion of the main ring injector at Fermilab, we are headed into an exciting time for the study of CP violation in B meson decays. This review outlines the basic ideas of such studies. For the most part, we follow the discussions given in Refs. [1–3].

Time evolution of neutral B meson states

Neutral B mesons, like neutral K mesons, have mass eigenstates which are not flavor eigenstates. This subject is reviewed separately [4]. Here we give some formulae to establish the notation used in this review. The mass eigenstates are given by:

$$|B_1\rangle = p|B^0\rangle + q|\overline{B}^0\rangle ,$$

$$|B_2\rangle = p|B^0\rangle - q|\overline{B}^0\rangle ,$$
(1)

where B^0 and \overline{B}^0 are flavor eigenstates containing the \overline{b} and b quarks respectively. The ratio

$$\frac{q}{p} = +\sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}} \ . \tag{2}$$

Created: 6/20/2000 14:10

Here, the CP operator is defined so that $CP|B^0\rangle = |\overline{B}^0\rangle$, and CPT symmetry is assumed. We define $M_{12} = \overline{M}_{12}e^{i\xi}$, where the phase ξ is restricted to $-\frac{1}{2}\pi < \xi < \frac{1}{2}\pi$, and \overline{M}_{12} is taken to be real but not necessarily positive; and similarly (with a

different phase) for Γ_{12} . The convention used here is that the real part of q/p is positive.

The differences in the eigenvalues $\Delta M = M_2 - M_1$ and $\Delta \Gamma = \Gamma_1 - \Gamma_2$ are given by

$$\Delta M = -2\operatorname{Re}\left(\frac{q}{p}(M_{12} - \frac{i}{2}\Gamma_{12})\right)$$

$$\simeq -2\overline{M}_{12}$$

$$\Delta\Gamma = -4\operatorname{Im}\left(\frac{q}{p}(M_{12} - \frac{i}{2}\Gamma_{12})\right)$$

$$\simeq 2\overline{\Gamma}_{12}\cos\zeta. \tag{3}$$

Here we denoted $\frac{\Gamma_{12}}{M_{12}} = re^{i\zeta}$. As we expect $r \sim 10^{-3}$ in the Standard Model for B_d , we kept only the leading order term in r. In the Standard Model, with these conventions and given that all models give a positive value for the parameter B_B , ΔM is positive, so that B_2 is heavier than B_1 ; this is unlikely to be tested soon. (Note that a common alternative convention is to name the two states B_L and B_H for light and heavy respectively; then the sign of q/p becomes the quantity to be tested.)

This review focuses on the B_d system, but also mentions some possibly interesting studies for CP violation in B_s decays, which may be pursued at hadron colliders. Much of the discussion here can be applied directly for B_s decays with the appropriate replacement of the spectator quark type.

The time evolution of states starting out at time t = 0 as pure B^0 or \overline{B}^0 is given by:

$$|B^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle$$
$$|\overline{B}^{0}(t)\rangle = g_{+}(t)|\overline{B}^{0}\rangle + \frac{p}{q}g_{-}(t)|B^{0}\rangle, \tag{4}$$

HTTP://PDG.LBL.GOV

Page 72

where

$$g_{\pm}(t) = \frac{1}{2}e^{-iM_1t}e^{-\frac{1}{2}\Gamma_1t}\left[1 \pm e^{-i\Delta Mt}e^{\frac{1}{2}\Delta\Gamma t}\right].$$
 (5)

We define

$$A(f) = \langle f|H|B^{0}\rangle ,$$

$$\overline{A}(f) = \langle f|H|\overline{B}^{0}\rangle ,$$

$$\overline{\rho}(f) = \frac{\overline{A}(f)}{A(f)} = \rho(f)^{-1} ,$$
(6)

where f is a final state that is possible for both B^0 and \overline{B}^0 decays. The time-dependent decay rates are thus given by

$$\Gamma(B^{0}(t) \to f)$$

$$\propto e^{-\Gamma_{1}t} |A(f)|^{2} \left[K_{+}(t) + K_{-}(t) \left| \frac{q}{p} \right|^{2} |\overline{\rho}(f)|^{2} \right]$$

$$+ 2\operatorname{Re} \left[L^{*}(t) \left(\frac{q}{p} \right) \overline{\rho}(f) \right] , \qquad (7)$$

$$\Gamma(\overline{B}^{0}(t) \to f)$$

$$\propto e^{-\Gamma_{1}t} |\overline{A}(f)|^{2} \left[K_{+}(t) + K_{-}(t) \left| \frac{p}{q} \right|^{2} |\rho(f)|^{2} \right]$$

$$+2\operatorname{Re}\left[L^*(t)\left(\frac{p}{q}\right)\rho(f)\right],\tag{8}$$

where

$$|g_{\pm}(t)|^{2} = \frac{1}{4}e^{-\Gamma_{1}t}K_{\pm}(t) ,$$

$$g_{-}(t)g_{+}^{*}(t) = \frac{1}{4}e^{-\Gamma_{1}t}L^{*}(t) ,$$

$$K_{\pm}(t) = 1 + e^{\Delta\Gamma t} \pm 2e^{\frac{1}{2}\Delta\Gamma t}\cos\Delta Mt ,$$

$$L^{*}(t) = 1 - e^{\Delta\Gamma t} + 2ie^{\frac{1}{2}\Delta\Gamma t}\sin\Delta Mt .$$
(9)

HTTP://PDG.LBL.GOV

Page 73

For the case of B_d decays the quantity $\Delta\Gamma/\Gamma$ is small and is usually dropped, for B_s decays it may be significant [6] and hence is retained in Eqs. 4–8.

Three classes of CP violation in B decays

When two amplitudes with different phase-structure contribute to a B decay, they may interfere and produce CP-violating effects [5]. There are three distinct types of CP violation: (1) CP violation from nonvanishing relative phase between the mass and the width parts of the mixing matrix which gives $|q/p| \neq 1$, often called "indirect;" (2) Direct CP violation, which is any effect that indicates two decay amplitudes have different weak phases (those arising from Lagrangian couplings), in particular it occurs whenever $|\rho(f)| \neq 1$; (3) Interference between a decays with and without mixing which can occur for decays to CP eigenstates whenever $Arg((q/p)\overline{\rho}(f)) \neq 0$. This can occur even for modes where both the other types do not, i.e. |q/p|, $|\rho(f)| = 1$.

(1) Indirect CP violation

In the next few years, experiments will accumulate a large number of semileptonic B decays. Any asymmetry in the wrong-sign semileptonic decays (or in any other wrong-flavor decays) is a clean sign of indirect CP violation.

The semileptonic asymmetry for the wrong sign B_q decay, where q = d or s, is given by

$$a_{SL}(B_q) = \frac{\Gamma(\overline{B}_q(t) \to \ell^+ X) - \Gamma(B_q(t) \to \ell^- X)}{\Gamma(\overline{B}_q(t) \to \ell^+ X) + \Gamma(B_q(t) \to \ell^- X)}$$
$$= \frac{|p/q|^2 - |q/p|^2}{|p/q|^2 + |q/p|^2} = r_{B_q} \sin \zeta_{B_q} , \qquad (10)$$

where we kept only the leading order term in r_{B_q} . Within the context of the Standard Model, if hadronic rescattering effects

are small then $\sin \zeta_{B_q}$ is small because M_{12} and Γ_{12} acquire their phases from the same combination of CKM matrix elements. Since this asymmetry is tiny in the Standard Model, this may be a fruitful area to search for physics beyond the Standard Model.

(2) Direct CP violation

Direct CP violation is the name given to CP violation that arises because there is a difference between the weak phases of any two decay amplitudes for a single decay. Weak phases are those that arise because of a complex coupling constant in the Lagrangian. Note that a single weak phase from a complex coupling constant is never physically meaningful because it can generally be removed by redefining some field by a phase. Only the differences between the phases of couplings which cannot be changed by such redefinitions are physically meaningful. The strong and electromagnetic couplings can always be defined to be real but, as Kobayashi and Maskawa first observed, in the three generation Standard Model one cannot remove all the phases from the CKM matrix by any choice of field redefinitions [7].

There are two distinct ways to observe direct CP-violation effects in B decays:

• $|\overline{A}_{\overline{f}}/A_f| \neq 1$ leading to rate asymmetries for CP-conjugate decays. Here, two amplitudes with different weak phases must contribute to the same decay; they must also have different strong phases, that is, the phases that arise because of absorptive parts (often called final-state interaction effects). When the final state f has different flavor content than its CP conjugate, this gives a rate asymmetry that is directly observable. The asymmetry is given by

$$a = \frac{2A_1A_2\sin(\xi_1 - \xi_2)\sin(\delta_1 - \delta_2)}{A_1^2 + A_2^2 + 2A_1A_2\cos(\xi_1 - \xi_2)\cos(\delta_1 - \delta_2)},$$
 (11)

where the A_i are the magnitudes, the ξ_i are the weak phases, and the δ_i are the strong phases of the two amplitudes contributing to A_f . The impact of direct CP violation of this type in decays of neutral B's to flavor eigenstates is discussed below.

• Any difference (other than an overall sign) between the CP asymmetries for decays of B_d mesons to flavor eigenstates, or between those of neutral B_s mesons, is an evidence of direct CP violation. As is shown below, such asymmetries arise whenever the decay weak phase is not canceled by the mixing weak phase, hence any two different results imply that there is a difference between the weak phases of the amplitudes for the two decays. Only if the asymmetries are the same can one choose a phase convention which ascribes all CP-violating phases to the mixing amplitude. For example, the expected asymmetries for the $B \to J/\psi K_S$ and $B \to \pi\pi$ decays are different (whether or not penguin graphs add additional direct CP-violating effects of the type $|\overline{A}_{\overline{f}}/A_f| \neq 1$ in the latter channel) because the dominant decay amplitudes have different weak phases in the Standard Model.

(3) Decays of B^0 and \overline{B}^0 to CP eigenstates

In decays to ${\cal CP}$ eigenstates, the time-dependent asymmetry is given by

$$a_f(t) = \frac{\Gamma(\overline{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\overline{B}^0(t) \to f) + \Gamma(B^0(t) \to f)}.$$
 (12)

Asymmetry is generated if: (i) both $A(B\to f)$ and $A(\overline B\to f)$ are nonzero; and (ii) the mixing weak phase in $\frac{q}{p}$ is different from the weak decay phase in $\overline p(f)$. To the leading order in r, the Standard Model predicts

$$q/p = \frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} = e^{-i2\phi_{\text{mixing}}}$$
 (13)

If there is only one amplitude (or two with the same weak phase) contributing to $A(B \to f)$ and $A(\overline{B} \to f)$ then $|\overline{\rho}(f)| = 1$ and the relationship between the measured asymmetry and the Kobayshi-Maskawa phases is cleanly predicted by

$$a_f(t) = \operatorname{Im}\left(\frac{q}{p}\overline{\rho}(f)\right) \sin \Delta M t$$
$$= -\eta_f \sin 2(\phi_{\text{mixing}} + \phi_{\text{decay}}) \sin \Delta M t . \tag{14}$$

Here we have used the fact that in such cases we can write $\overline{\rho}(f) = \eta_f e^{-i2\phi_{\text{decay}}}$ where $\eta_f = \pm$ is the CP eigenvalue of the state f. The weak phases ϕ_{mixing} and ϕ_{decay} are parameterization dependent quantities, but the combination $\phi_{\text{mixing}} + \phi_{\text{decay}}$ is parameterization independent. This is CP violation due to the interference between decays with and without mixing. Note that a single measurement of $\sin(2\phi)$ yields four ambiguous solutions for ϕ .

When more than one amplitude with different weak phases contribute to a decay to a CP eigenstate there can also be direct CP violation effects $|\lambda_f = (q/p) \rho(f)| \neq 1$ and the asymmetry takes the more complicated form

$$a_f(t) = \frac{(|\lambda_f|^2 - 1)\cos(\Delta M t) + 2\operatorname{Im}\lambda_f\sin(\Delta M t)}{(1 + |\lambda_f|^2)} \ . \tag{15}$$

The quantity λ_f involves the ratio of the two amplitudes that contribute to A_f as well as their relative strong phases and hence introduces the uncertainties of hadronic physics into the relationship between the measured asymmetry and the K–M phases. However in certain cases such channels can be useful in resolving the ambiguities mentioned above. If $\cos(2\phi)$ can be measured as well as $\sin(\phi)$ only a two-fold ambiguity remains. This can be resolved only by knowledge of the sign of certain strong phase shifts [8].

When a B meson decays to a CP self-conjugate set of quarks the final state is in general a mixture of CP even and CP odd states, which contribute opposite sign and hence partially canceling asymmetries. In two special cases, namely the decay to two spin zero particles, or one spin zero and one non-zero spin particle there is a unique CP eigenvalue because there is only one possible relative angular momentum between the two final state particles. Quasi-two-body modes involving two particles with non-zero spin can sometimes be resolved into contributions of definite CP by angular analysis of the decays of the "final-state" particles [9].

There can also be a direct CP violation in these channels from the interference of two contributions to the same decay amplitude, $|\rho(f)| \neq 1$. This introduces dependence on the relative strengths of the two amplitude contributions and on their relative strong phases. Since these cannot be reliably calculated at present, this complicates the attempt to relate the measured asymmetry to the phases of CKM matrix elements.

$Standard\ Model\ predictions\ for\ CP\mbox{-}violating\ asymmetries$

• Unitarity Triangles

The requirement that the CKM matrix be unitary leads to a number of relationships among its entries. The constraints that the product of row i with the complex conjugate of row j is zero are generically referred to as "unitarity triangles" because they each take the form of a sum of three complex numbers equal to zero and hence can be represented by triangles in the complex plane. There are six such relationships, (see for example Ref. 10); the most commonly studied is that with all angles of the same order of magnitude, given by the relationship

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0. (16)$$

This relation can be represented as a triangle on the complex plane, as shown in Fig. 1, where the signs of all three angles are also defined. When the sides are scaled by $|V_{cd}V_{cb}^*|$, the apex of the triangle is the point ρ , η , where these parameters are defined by the Wolfenstein parameterization of the CKM matrix [11]. If $\eta = 0$, the CKM matrix is real and there is no CP violation in the Standard Model.

Figure 1: Angles of the unitarity triangle are related to the Kobayashi-Maskawa phases of the CKM matrix. The right-hand rule gives the positive direction of the angle between two vectors. This figure was reproduced from Ref. 1 with permission from Cambridge University Press.

The angles of the triangle are

$$\phi_{1} = \pi - \arg\left(\frac{-V_{tb}^{*}V_{td}}{-V_{cb}^{*}V_{cd}}\right) = \beta ,$$

$$\phi_{2} = \arg\left(\frac{V_{tb}^{*}V_{td}}{-V_{ub}^{*}V_{ud}}\right) = \alpha ,$$

$$\phi_{3} = \arg\left(\frac{V_{ub}^{*}V_{ud}}{-V_{cb}^{*}V_{cd}}\right) = \gamma .$$

$$(17)$$

Two naming conventions for these angles are commonly used in the literature [12,13]; we provide the translation dictionary

in Eq. (17), but use the ϕ_i notation in the remainder of this review, where ϕ_i is the angle opposite the side $V_{ib}^*V_{id}$ of the unitarity triangle and i represents the i-th up-type quark. As defined here, for consistency with the measured value of ϵ_K , these angles are all positive in the Standard Model, thus a determination of the sign of these angles constitutes a test of the Standard Model [14].

There are two other independent angles of the Standard Model which appear in other triangles. These are denoted

$$\chi = \arg\left(\frac{-V_{cs}^* V_{cb}}{V_{ts}^* V_{tb}}\right) = \beta_s$$

$$\chi' = \arg\left(\frac{-V_{ud}^* V_{us}}{V_{cd}^* V_{cs}}\right) = -\beta_K .$$
(18)

Again there are two naming conventions in common usage so we give both. These angles are of order λ^2 and λ^4 respectively [15], where $\lambda = V_{us}$. The first of them is the phase of the B_s mixing and thus is in principle measurable, though it will not be easy to achieve a result significantly different from zero for such a small angle. The angle χ' will be even more difficult to measure. Meaningful standard model tests can be defined which use the measured value of λ coupled with χ and any two of the three ϕ_i [16].

A major aim of CP-violation studies of B decays is to make enough independent measurements of the sides and angles that this unitarity triangle is overdetermined, and thereby check the validity of the Standard Model predictions that relate various measurements to aspects of this triangle. Constraints can be made on the basis of present data on the B-meson mixing and lifetime, and on the ratio of charmless decays to decays with charm (V_{ub}/V_{cb}) , and on ϵ in K decays [17]. These constraints have been discussed in many places in the literature; for a

recent summary of the measurements involved, see Ref. [18]. Note, however, that any given "Standard Model allowed range" cannot be interpreted as a statistically-based error range. The ranges of allowed values depend on matrix element estimates. Improved methods to calculate such quantities, and understand the uncertainties in them, are needed to further sharpen tests of the Standard Model. Recent progress in lattice simulation using dynamical fermions seems encouraging [19]. It can be hoped that reliable computations of f_B , B_B , and B_K will be completed in the next few years. This will reduce the theoretical uncertainties in the relationships between measured mixing effects and the magnitudes of CKM parameters.

In the Standard Model there are only two independent phases in this triangle since, by definition, the three angles add up to π . The literature often discusses tests of whether the angles add up to π ; but this really means tests of whether relationships between different measurements, predicted in terms of the two independent parameters in the Standard Model, hold true. For example, many models that go beyond the Standard Model predict an additional contribution to the mixing matrix. Any change in phase of M_{12} will change the measured asymmetries so that $\phi_1(\text{measured}) \to \phi_1 - \phi_{\text{new}}$ and $\phi_2(\text{measured}) \to \phi_2 + \phi_{\text{new}}$. Thus the requirement that the sum of the three angles must add up to π is not sensitive to ϕ_{new} [20]. However, the angles as determined from the sides of the triangle would, in general, no longer coincide with those measured from asymmetries. It is equally important to check the asymmetries in channels for which the Standard model predicts very small or vanishing asymmetries. A new mixing contribution which changes the phase of M_{12} will generate significant asymmetries in such

channels. In the Standard Model the CKM matrix must be unitary, this leads to relationships among its entries.

• Standard Model decay amplitudes

In the Standard Model, there are two classes of quarklevel diagrams that contribute to hadronic B decays, as shown in Fig. 2. Tree diagrams are those where the W produces an additional quark-antiquark pair. Penguin diagrams are loop diagrams where the W reconnects to the same quark line. Penguin diagrams can further be classified by the nature of the particle emitted from the loop: gluonic or QCD penguins if it is a gluon, and electroweak penguins if it is a photon or a Z boson. In addition, one can label penguin diagrams by the flavor of the up-type quark in the loop; for any process all three flavor types contribute. For some processes, there are additional annihilation-type diagrams; these always contribute to the same CKM structure as the corresponding trees. For a detailed discussion of the status of calculations based on these diagrams, or rather on the more complete operator product approach which also includes higher order QCD corrections see, for example, Ref. 21. Note that the distinction between tree and penguin contributions is a heuristic one, the separation of contributions by the operator that enters is more precise.

To explore possible CP violations, it is useful to tabulate all possible decays by the CKM structure of the various amplitudes. Let us first consider decays $b \to q\overline{q}'s$. The CKM factors for the diagrams for such decays are given in Table 1. Here we have used the fact that, for all such decays, the contribution to the amplitude from penguin graphs has the structure

$$A_P(q\overline{q}s) = V_{tb}V_{ts}^* P_t + V_{cb}V_{cs}^* P_c + V_{ub}V_{us}^* P_u , \qquad (19)$$

Figure 2: Quark level processes for the example of $b \to c\overline{c}s$. (a) Tree diagram; (b) Penguin diagram. In the case of electroweak penguin contributions, the gluon is replaced by a Z or a γ .

where the P_i quantities are the amplitudes described by the loop diagram with a flavor i quark apart from the explicitly shown CKM factor (i.e., including strong phases). These are actually divergent quantities, so it is convenient to use a Standard Model unitarity relationship, $V_{tb}V_{ts}^* + V_{cb}V_{cs}^* + V_{ub}V_{us}^* = 0$, to regroup them in the following way

$$A_{P}(q\overline{q}s) = V_{cb}V_{cs}^{*}(P_{c} - P_{t}) + V_{ub}V_{us}^{*}(P_{u} - P_{t}) , \qquad (20)$$

or, equivalently,

$$A_P(q\bar{q}s) = V_{tb}V_{ts}^*(P_t - P_c) + V_{ub}V_{us}^*(P_u - P_c) . (21)$$

The first term is of order λ^2 , whereas the second is of order λ^4 , and can be ignored in most instances. For modes with $q' \neq q$, there are no penguin contributions. Note also that for the $q\overline{q} = u\overline{u}, d\overline{d}$ cases, the QCD penguin graphs contribute only to the isospin zero combinations, whereas tree graphs contribute only for $u\overline{u}$ and hence have both $\Delta I = 0$ and $\Delta I = 1$ parts, as do electroweak penguins.

The CKM coefficients for $b \to q\overline{q}'d$ are listed in Table 2. A similar exercise to that described above for the penguins yields

$$A_P(q\overline{q}d) = V_{tb}V_{td}^*(P_t - P_c) + V_{ub}V_{ud}^*(P_u - P_c) . {22}$$

Here the two CKM contributions are of the same order of magnitude λ^3 , so both must be considered. This grouping is generally preferred over the alternative, because the second term here is somewhat smaller than the first term; it has no top-quark contribution and would vanish if the up and charm quarks were degenerate. In early literature it was often dropped, but, particularly for modes where there is no tree contribution, its effect in generating direct CP violation may be important [22]. Here the $q\bar{q}=u\bar{u}, d\bar{d}$ cases in the penguin graph contribute only to the isospin zero combinations, yielding $\Delta I=1/2$ for the three-quark combination, whereas tree graphs and electroweak penguins have both $\Delta I=1/2$ and $\Delta I=3/2$ parts. For $q\bar{q}=c\bar{c}$, isospin does not distinguish between tree and penguin contributions.

Table 1: $B \to q\overline{q}s$ decay modes

Quark process	Leading term	Secondary term	Sample B_d modes	B_d angle	Sample B_s modes	B_s angle
$b \to c\overline{c}s$	$V_{cb}V_{cs}^* = A\lambda^2$ tree + penguin(c - t)	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ penguin only(u - t)	$J/\psi \ K_S$	β	$J/\psi\eta$ $D_s\overline{D}_s$	0
$b \to s\overline{s}s$	$V_{cb}V_{cs}^* = A\lambda^2$ penguin only(c - t)	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ penguin only(u - t)	ϕK_S	β	$\phi\eta'$	0
$b \to u\overline{u}s$ $b \to d\overline{d}s$	$V_{cb}V_{cs}^* = A\lambda^2$ penguin only(c - t)	$V_{ub}V_{us}^* = A\lambda^4(\rho - i\eta)$ tree + penguin(u - t)	$\pi^0 K_S$ ρK_S	competing terms	$\phi\pi^0 \ K_S \overline{K}_S$	competing

GOV Page 85 Created: 6/20/2000 14:10

Table 2: $B \to q\overline{q}d$ decay modes

Quark process	Leading term	Secondary term	Sample B_d modes	B_d angle	Sample B_s modes
$b \to c\overline{c}d$	$V_{cb}V_{cd}^* = -A\lambda^3$ tree + penguin(c - u)	$V_{tb}V_{td}^* = A\lambda^3(1-\rho+i\eta)$ penguin only $(t-u)$	D+D-	$*\beta$	$J/\psi \ K_S$
$b \to s\overline{s}d$	$V_{tb}V_{td}^* = A\lambda^3(1 - \rho + i\eta)$ penguin only $(t - u)$	$V_{cb}V_{cd}^* = A\lambda^3$ penguin only $(c - u)$	$\phi \pi \ K_S \overline{K}_S$	competing	ϕK_S
$b \to u \overline{u} d$ $b \to d \overline{d} d$	$V_{ub}V_{ud}^* = A\lambda^3(\rho - i\eta)$ tree + penguin(u - c)	$V_{tb}V_{td}^* = A\lambda^3(1 - \rho + i\eta)$ penguin only(t - c)	$\pi\pi; \pi ho \ \pi a_1$	$^*\alpha$	$\pi^0 K_S$ $ ho^0 K_S$
$b \to c \overline{u} d$	$V_{cb}V_{ud}^* = A\lambda^2$	0	$D^0\pi^0, D^0\rho^0$ $\downarrow \longrightarrow CH$		$ \begin{array}{c} D^0 K_S \\ $

 $^{^*\}mbox{Leading terms}$ only, large secondary terms shift asymmetry.

DG.LBL.GOV

Page 86

Modes with direct CP violation

The largest direct CP violation is expected when there are two comparable magnitude contributions with different weak phases. Modes where the tree graphs are Cabibbo suppressed, compared to the penguins or modes with two comparable penguin contributions, are thus the best candidates. As can be seen from the tables and expressions for penguin contributions above, there are many possible modes to study. Because strong phases cannot usually be predicted, there is no clean prediction as to which modes will show the largest direct CP-violation effects. One interesting suggestion is to study three-body modes with more than one resonance in the same kinematic region. Then the different amplitudes can have very different, possibly known, strong phase structure because of the resonance (Breit-Wigner) phases [23].

Over the past two years, new information has become available from the CLEO Collaboration which suggests that penguin contributions, at least for some modes, are larger than initial estimates suggested. This is seen by using SU(3) and comparing $B \to K\pi$ and $B \to \pi\pi$ decays. To get an order of

magnitude picture, we ignore such details as Clebsch-Gordan coefficients and assume that top penguins dominate the penguin contributions. Thus, we identify the tree and penguin contributions, minus their CKM coefficients, as T and P, the same for both modes. Writing $A_{T,P}(K\pi)$ for the tree and penguin contributions to the $K\pi$ amplitude, and similarly for $\pi\pi$ from the Tables, we see that $|A^T(K\pi)/A^T(\pi\pi)| = \mathcal{O}(\lambda)$. Thus, if the tree graph matrix elements were to dominate both decays, we would expect $Br(B \to K\pi)/Br(B \to \pi\pi) \sim \mathcal{O}(\lambda^2)$. Naively, this was expected, since the ratio of tree to penguin contribution was estimated to be $\frac{P}{T} = \frac{\alpha_S}{12\pi} \log \frac{m_t^2}{m_b^2} \sim \mathcal{O}(0.02)$. Experimentally, this is not so [24]; in fact, the $K\pi$ branching ratio is larger. This indicates that $A^{P}(K\pi) \sim A^{T}(\pi\pi)$, which suggests that $\frac{P}{T} = \mathcal{O}(\lambda)$ or larger, considerably bigger than expected. Note that this is one way that new physics could be hidden in modes with $|\rho(f)| \neq 1$; any new physics contribution can always be written as a sum of two terms with the weak phases of the two Standard Model terms (for example in Eq. (22)), and thus, when added to the Standard Model contributions, appears only as a change in the sizes of P and T from that expected in the Standard Model. However, we cannot calculate these relative sizes well enough to identify such an effect with confidence.

From the point of view of looking for direct CP-violation effects, a large P/T is good news. The largest asymmetry is expected when the interfering amplitudes have comparable magnitudes. This may be so in $B \to K\pi$ decay (or the penguin contribution may even be larger than the tree). There is no reason for the strong phases to be equal (although they could both be small). Therefore, $B^{\pm} \to K^{\pm}\pi$ is a likely hunting ground for direct CP violation. (Note there is no gluonic penguin contribution to charged $B \to \pi\pi$, and hence, no significant CP violation expected in the Standard Model.) However, as we will

see below, a large P/T complicates the relationship between the measured asymmetry in neutral B decays to $\pi^+\pi^-$ and KM phases.

$Studies\ of\ CP\ eigenstates$

$\bullet f = J/\psi K_S$

The asymmetry in the Golden Mode $B \to J/\psi K_S$ [25] will be measured soon. Since, using Eq. (20), the dominant penguin contribution has the same weak phase as the tree graph, and the remaining term is tiny, there is effectively only one weak phase in the decay amplitude. Hence, in the asymmetry, all dependence on the amplitudes cancel. With about 1% uncertainty,

$$\frac{q}{p}\overline{\rho}(J/\psi K_S) \simeq -\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \cdot \frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}} \cdot \frac{V_{cs} V_{cd}^*}{V_{cs}^* V_{cd}} \equiv -e^{-2i\phi_1} , \quad (23)$$

where the last factor arises from the $K^0-\overline{K}^0$ mixing amplitude and appears because of the K_S in the final state. The asymmetry is thus given by

$$a_{J/\psi K_S} = \sin(2\phi_1)\sin\Delta Mt , \qquad (24)$$

where the angle ϕ_1 is defined in Fig. 1. Given current constraints a large positive value for $\sin(2\phi_1)$ will be strongly suggestive that the KM ansatz for CP violation is at least one of the sources of this interesting phenomenon.

$$ullet$$
 $B^0 o \pi^+\pi^-$

The tree and penguin terms appear at the same order in λ (see Eq. (22) and Table 2.) If penguin decays were negligible the asymmetry would directly measure $\sin(2\phi_2)$. Given the enhanced penguin contribution seen from comparing $\pi\pi$ and $K\pi$ decays, the penguins cannot be ignored, and a treatment that does not assume $|\rho(f)| = 1$ must be made.

If all six modes of $B^+ \to \pi^+ \pi^0$, $B^0 \to \pi^+ \pi^-$, $B^0 \to \pi^0 \pi^0$ and their charge conjugates can be measured with sufficient

accuracy, ϕ_2 can be extracted using an isospin analysis [26], up to small corrections from electroweak penguins. However, the branching ratio for the charged modes is less than 10^{-5} [24], and that for the more difficult to measure $B^0 \to \pi^0 \pi^0$ is expected to be even smaller. Therefore, further ingenuity is needed to get at this angle cleanly. A future possibility is to study the Dalitz plot of $B \to 3\pi$ decays [27].

Further Measurements

As Tables 1 and 2 suggest there are many more CP-eigenstate modes that are interesting to study, both for B_d and similarly for B_s decays. The latter states are not accessible for the B factories operating at the $\Upsilon(4S)$ resonance, but may be studied at hadronic colliders. The CDF result on the asymmetry in the $J/\psi K_S$ mode is an indication of the capabilities of such facilities for B physics [29]. Upgrades of the Fermilab detectors are in progress and proposals for new detectors with the capability to achieve fast triggers for a larger variety of purely hadronic modes are under development, promising some future improvement in this capability.

In addition to CP-eigenstate modes there are many additional modes for which particular studies have been proposed, in particular those focussed on extracting ϕ_3 (γ). Modes such as DK, DK^* and D^*K where the D mesons decay to CP eigenstates provide theoretically clean extraction of this parameter but have small branching ratios [30]. Other approaches involve the more copious $K\pi$ modes but rely on the use of isospin and SU(3) (U-spin) symmetries, so have larger theoretical uncertainties [31]. This is an active area of current theoretical work.

For a recent review of how predictions for CP-violating effects are affected by Beyond Standard Model effects see Ref. 28. There are also many ways to search for new physics effects in B decays that do not involve just the CP-violation

effects. For example searches for isospin breaking effects in $K\pi$ modes have recently been suggested as a likely method to isolate such effects [32].

References

- 1. Much of what is presented is explained in further detail in I.I. Bigi and A.I. Sanda, *CP Violation*, Cambridge University Press, Cambridge (1999).
- 2. For a review of CP violation in B decays see: I.I. Bigi, V.A. Khoze, N.G. Uraltsev, and A.I. Sanda, in CP Violation, ed. C. Jarlskog (World Scientific, Singapore, 1989).
- 3. Y. Nir and H.R. Quinn, Ann. Rev. Nucl. Sci. **42**, 211 (1992).
- 4. See our review on " $B^0-\overline{B}^0$ Mixing" by O. Schneider in the B^0 Listings in the full Review.
- 5. A.B. Carter and A.I. Sanda, Phys. Rev. Lett. **45**, 952 (1980); Phys. Rev. **D23**, 1567 (1981).
- R. Aleksan *et al.*, Phys. Lett. **B316**, 567 (1993);
 M. Beneke, G. Buchalla, I. Duniety, Phys. Rev. **D54**, 4419 (1996).
- 7. See our review on the CKM mixing matrix by F.J. Gilman, K. Kleinknecht and B. Renk in the full *Review*.
- 8. Y. Grossman and H. Quinn, Phys. Rev. **D56**, 7259 (1997).
- 9. J.R. Dell'Aquila and C.A. Nelson, Phys. Rev. **D33**, 101 (1986);
 - B. Kayser et al., Phys. Lett. **B237**, 3339 (1990);
 - I. Dunietz et al., Phys. Rev. **D43**, 2193 (1991).
- 10. R. Alexsan, B. Kayser, and D. London, Phys. Rev. Lett. **73**, 18 (1994).
- 11. L. Wolfenstein, Phys. Rev. Lett. **51**, 1945 (1983).
- 12. The angles of the unitarity triangle ϕ_1 , ϕ_2 , ϕ_3 are those used in J.L. Rosner, A.I. Sanda, and M. Schmidt in *Proc. Fermilab Workshop on High Sensitivity Beauty Physics at Fermilab*, A.J. Slaughter, N. Lockyer and M. Schmidt, eds., 1987.

- 13. C.O. Dib *et al.*, Phys. Rev. **D41**, 1522 (1990). See also Y. Nir SLAC Report 412 p. 102 (1992) for careful definition of the signs in the α, β, γ notation.
- 14. Y. Nir and H. Quinn, Phys. Rev. **D42**, 1473 (1990).
- 15. I.I. Bigi and A.I. Sanda, Nucl. Phys. **B193**, 85 (1981); I.I. Bigi, in *Proceedings of the Tau-Charm Workshop*, SLAC-Report 343, p. 169 (1989).
- 16. J.P. Silva and L. Wolfenstein Phys. Rev. **D55**, 5331 (1997).
- 17. See our review on "CP Violation" by L. Wolfenstein in the full Review.
- 18. Adam F. Falk, talk presented at 19th International Symposium on Lepton and Photon Interactions at High-Energies (LP 99) (Stanford, CA 9–14 Aug 1999) hep-ph/9908520.
- 19. S. Aoki, talk presented at 19th International Symposium on Lepton and Photon Interactions at High-Energies (LP 99) (Stanford, CA, 9–14 Aug 1999).
- 20. See for example Y. Nir and D. Silverman, Nucl. Phys. **B345**, 301 (1990).
- 21. G. Buchalla, A. J. Buras, M. E. Lautenbacher, Rev. Mod. Phys. **68**, 1125 (1996).
- J.M. Gérard and W.S. Hou, Phys. Rev. **D43**, 2909 (1991) and Phys. Lett. **B253**, 478 (1991);
 H. Simma, G. Eilam, and D. Wyler, Nucl. Phys. **B352**, 367 (1991);
 R. Fleischer, Phys. Lett. **B341**, 205 (1994).
- 23. D. Atwood and A. Soni, Z. Phys. **C64**, 241 (1994); Phys. Rev. Lett. **74**, 220 (1995).
- 24. Y. Kwon et al., CLEO-CONF-99-14, Talk given at 19th International Symposium on Lepton and Photon Interactions at High-Energies (LP 99) (Stanford, CA, 9-14 Aug 1999) hep-ex/9908039.
- I.I. Bigi and A.I. Sanda, Nucl. Phys. **B193**, 85 (1981);
 Nucl. Phys. **B281**, 41 (1987).
- 26. M. Gronau and D. London, Phys. Rev. Lett. **65**, 3381 (1990).
- 27. H.R. Quinn and A.E. Snyder, Phys. Rev. 48, 2139 (1993).

- 28. *CP* Violation beyond the Standard Model. By Y. Grossman, Y. Nir, R. Rattazzi, SLAC-PUB-7379, Jan 1997. In *Heavy flavours II* p. 755, A.J. Buras, M. Lindner, eds., e-Print Archive: hep-ph/9701231.
- 29. CDF Collaboration: T. Affolder *et al.*, Phys. Rev. **D61**, 072005 (2000).
- 30. I. Dunietz, Phys. Lett. **B270**, 75 (1991);
 M. Gronau and D. Wyler, Phys. Lett. **B265**, 172 (1991);
 D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. **78**, 3257 (1997).
- 31. See for example M. Gronau, J.L. Rosner, and D. London, Phys. Rev. Lett. 73, 21 (1994);
 M. Gronau, O.F. Hernandez, D. London, and J.L. Rosner Phys. Rev. D50, 4529 (1994);
 - M. Gronau and J.L. Rosner, Phys. Rev. Lett. **76**, 1200 (1996);
 - R. Fleischer and T. Mannel, Phys. Rev. **D57**, 2752 (1998);
 M. Neubert and J. L. Rosner, Phys. Lett. **B441**, 403
 - (1998) and Phys. Rev. Lett. **81**, 5076 (1998); M. Neubert, Invited talk at *High Energy Physics International Euroconference on Quantum Chromo Dynamics*
 - (QCD '99) (Montpellier, France, 7–13 July 1999) hep-ph/9909564.
- 32. Y. Grossman, M. Neubert, and A.L. Kagan (Cincinnati U.). SLAC-PUB-8243, hep-ph/9909297.

CP VIOLATION PARAMETERS

$\operatorname{Re}(\epsilon_{R^0})/(1+|\epsilon_{R^0}|^2)$

CP Impurity in B_d^0 system. It is obtained from either $a_{\ell\ell}$, the charge asymmetry in like-sign dilepton events or a_{cp} , the time-dependent asymmetry of inclusive B^0 and \overline{B}^0 decays.

```
VALUEDOCUMENT IDTECNCOMMENT0.002±0.007 OUR NEW AVERAGE[0.002 \pm 0.008 \text{ OUR } 1998 \text{ AVERAGE}]0.001±0.014±0.003342 ABBIENDI99J OPALe^+e^- \rightarrow Z0.002±0.007±0.003343 ACKERSTAFF97U OPALe^+e^- \rightarrow Z• • • We do not use the following data for averages, fits, limits, etc.• • •<0.045</td>344 BARTELT93 CLE2e^+e^- \rightarrow \Upsilon(4S)
```

- 342 Data analyzed using the time-dependent asymmetry of inclusive B^0 decay. The production flavor of B^0 mesons is determined using both the jet charge and the charge of secondary vertex in the opposite hemisphere.
- 343 ACKERSTAFF 97U assumes CPT and is based on measuring the charge asymmetry in a sample of B^0 decays defined by lepton and $Q_{\rm hem}$ tags. If CPT is not invoked, ${\rm Re}(\epsilon_B)=-0.006\pm0.010\pm0.006$ is found. The indirect CPT violation parameter is determined to ${\rm Im}(\delta\,B)=-0.020\pm0.016\pm0.006$.
- ³⁴⁴ BARTELT 93 finds $a_{\ell\ell}=0.031\pm0.096\pm0.032$ which corresponds to $|a_{\ell\ell}|<0.18$, which yields the above $|{\rm Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2|$.

$sin(2\beta)$

For a discussion of CP violation, see the note on "CP Violation in B Decay Standard Model Predictions" in the B^0 Particle Listings above. $\sin(2\beta)$ is a measure of the CP-violating amplitude in the $B^0_d \to J/\psi(1S)\,K^0_S$.

.	a ' ' `	′)	
VALUE	DOCUMENT ID	TECN	COMMENT
0.9 ± 0.4 OUR AVERAGE			
$0.79^{igoplus 0.41}_{-0.44}$	³⁴⁵ AFFOLDER	00c CDF	$p\overline{p}$ at 1.8 TeV
$3.2 \ ^{+1.8}_{-2.0} \ \pm 0.5$	346 ACKERSTAFF	98z OPAL	$e^+e^- ightarrow Z$
• • • We do not use the following	ng data for averages	, fits, limits,	etc. • • •
$1.8 \pm 1.1 \pm 0.3$	³⁴⁷ ABE	98u CDF	Repl. by AF- FOLDER 00C
345 AFFOLDER 00C uses about	400 $B^0 \to J/\psi(15)$	$(S)K_S^0$ events	. The production flavor of
B^0 was determined using the and a soft-lepton tag.	nree tagging algorith	ms: a same-	side tag, a jet-charge tag,
346 ACKERSTAFF 98Z uses 24	u		•
of jet-charge and vertex-cha			
347 ABE 98U uses 198 \pm 17 B_{o}^{0}	$_{ extstyle o}$ $J/\psi(1S) K^{ extstyle 0}$ ev	ents. The pr	roduction flavor of B^0 was
determined using the same s			

$B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell}$ FORM FACTORS

R_1 (form factor ratio \sim	V/A_1)			
VALUE	DOCUMENT ID		TECN	COMMENT
1.18±0.30±0.12	DUBOSCQ	96	CLE2	$e^+e^- ightarrow \gamma(4S)$
R_2 (form factor ratio \sim	A_2/A_1)			
VALUE	DOCUMENT ID		TECN	COMMENT
$0.71 \pm 0.22 \pm 0.07$	DUBOSCQ	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$ ho_{A_1}^2$ (form factor slope)				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.91 \pm 0.15 \pm 0.06$	DUBOSCQ	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

B⁰ REFERENCES

AFFOLDER	00C	PR D61 072005	T. Affolder et al.	(CDF Collab.)
BEHRENS	00	PR D61 052001	B.H. Behrens <i>et al.</i>	(CLEO Collab.)
CSORNA	00	PR D61 111101	S.E. Csorna et al.	(CLEO Collab.)
ABBIENDI	99 J	EPJ C12 609	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABE ABE	99K 99Q	PR D60 051101 PR D60 072003	F. Abe <i>et al.</i> F. Abe <i>et al.</i>	(CDF Collab.) (CDF Collab.)
AFFOLDER	99Q 99B	PRL 83 3378	T. Affolder <i>et al.</i>	(CDF Collab.)
AFFOLDER	99C	PR D60 112004	T. Affolder <i>et al.</i>	(CDF Collab.)
ARTUSO	99	PRL 82 3020	M. Artuso et al.	(ČLEO Collab.)
BARTELT	99	PRL 82 3746	J. Bartelt et al.	(CLEO Collab.)
COAN	99	PR D59 111101 PL B423 419	T.E. Coan <i>et al.</i> B. Abbott <i>et al.</i>	(CLEO Collab.)
ABBOTT ABE	98B 98	PR D57 R3811	F. Abe <i>et al.</i>	(D0 Collab.) (CDF Collab.)
ABE	98B	PR D57 5382	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98C	PRL 80 2057	F. Abe et al.	(CDF Collab.)
Also	99C	PR D59 032001	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	980	PR D58 072001	F. Abe et al.	(CDF Collab.)
ABE ABE	98Q 98U	PR D58 092002 PRL 81 5513	F. Abe <i>et al.</i> F. Abe <i>et al.</i>	(CDF Collab.) (CDF Collab.)
ABE	98V	PRL 81 5742	F. Abe et al.	(CDF Collab.)
ACCIARRI	98D	EPJ C5 195	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	98S	PL B438 417	M. Acciarri et al.	(L3 Collab.)
ACKERSTAFF		EPJ C5 379	K. Ackerstaff et al.	(OPAL Collab.)
BARATE BEHRENS	98Q 98	EPJ C4 387 PRL 80 3710	R. Barate <i>et al.</i> B.H. Behrens <i>et al.</i>	(ALEPH Collab.) (CLEO Collab.)
BERGFELD	98	PRL 81 272	T. Bergfeld <i>et al.</i>	(CLEO Collab.)
BRANDENB		PRL 80 2762	G. Brandenbrug <i>et al.</i>	(CLEO Collab.)
GODANG	98	PRL 80 3456	R. Godang et al.	(CLEO Collab.)
NEMATI	98	PR D57 5363	B. Nemati et al.	(CLEO Collab.)
ABE	97J	PRL 79 590	K. Abe <i>et al.</i>	(SLD Collab.)
ABREU Also	97F 97K	ZPHY C74 19 ZPHY C75 579 erratum	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	97N	ZPHY C76 579	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	97B	PL B391 474	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	97C	PL B391 481	M. Acciarri et al.	(L3 Collab.)
ACKERSTAFF	97G	PL B395 128	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ACKERSTAFF	97U	ZPHY C76 401	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF ACKERSTAFF	97U 97V	ZPHY C76 401 ZPHY C76 417	K. Ackerstaff <i>et al.</i>K. Ackerstaff <i>et al.</i>	(OPAL Collab.) (OPAL Collab.)
ACKERSTAFF	97U	ZPHY C76 401	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS	97U 97V 97 97 97	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208	 K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. 	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC	97U 97V 97 97 97 97	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373	 K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. 	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC	97U 97V 97 97 97 97 97	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397	 K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. 	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU	97U 97V 97 97 97 97 97D 97	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125	 K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. 	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC	97U 97V 97 97 97 97 97	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397	 K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. 	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP	97U 97V 97 97 97 97 97 97 96B 96C	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. C.P. Jessop et al. F. Abe et al. F. Abe et al.	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE ABE ABE	97U 97V 97 97 97 97 97D 97 96B 96C 96H	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 2015	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al.	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE ABE ABE ABE	97U 97V 97 97 97 97 97D 97 96B 96C 96H 96L	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 4075 PRL 76 4675	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al.	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE ABE ABE ABE ABE ABE	97U 97V 97 97 97 97 97 97 96B 96C 96H 96L 96Q	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 2015 PRL 76 4675 PR D54 6596	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. C.P. Jessop et al. F. Abe et al.	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE ABE ABE ABE	97U 97V 97 97 97 97 97D 97 96B 96C 96H 96L	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 4075 PRL 76 4675	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al.	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE ABE ABE ABE ABE ABE ABE ABE	97U 97V 97 97 97 97 97 97 96B 96C 96H 96L 96Q 96P	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. P. Abreu et al. P. Abreu et al.	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE	97U 97V 97 97 97 97 97 96B 96C 96H 96Q 96P 96Q 96E 96D	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al.	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE	97U 97V 97 97 97 97 97 97 96B 96C 96H 96L 96Q 96P 96P 96D	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al.	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (ARGUS Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE	97U 97V 97 97 97 97 97 96B 96C 96H 96L 96Q 96P 96Q 96E 96D 96D	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al.	(OPAL Collab.) (OPAL Collab.) (OLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (ARGUS Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE	97U 97V 97 97 97 97 97 97 96B 96C 96H 96L 96Q 96P 96P 96D	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al.	(OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (ARGUS Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE	97U 97V 97 97 97 97 97 96B 96C 96H 96L 96Q 96P 96P 96P 96P 96P 96D 96T	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 2015 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000 ZPHY C72 377 PR D53 1039 PRL 76 1570	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al. G. Alexander et al.	(OPAL Collab.) (OPAL Collab.) (OLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (ARGUS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE	97U 97V 97 97 97 97 97 96B 96C 96H 96Q 96P 96Q 96E 96D 96D 96T 96V 96 96B	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4662 PRL 76 2015 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000 ZPHY C72 377 PR D53 1039 PRL 76 1570 PL B369 186	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al. D.M. Asner et al. B.C. Barish et al. M. Bishai et al.	(OPAL Collab.) (OPAL Collab.) (OLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (ARGUS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE	97U 97V 97 97 97 97 97 96B 96C 96H 96Q 96P 96Q 96E 96D 96T 96C 96B 96D	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000 ZPHY C72 377 PR D53 1039 PRL 76 1570 PL B369 186 ZPHY C71 31	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al. D. M. Asner et al. B. C. Barish et al. M. Bishai et al. D. Buskulic et al.	(OPAL Collab.) (OPAL Collab.) (OLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (ARGUS Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC FU JESSOP ABE	97U 97V 97 97 97 97 97 96B 96C 96H 96L 96P 96B 96D 96T 96V 96 96B 96B	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000 ZPHY C72 377 PR D53 1039 PRL 76 1570 PL B369 186 ZPHY C71 31 PL B384 471	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al. D.M. Asner et al. B. C. Barish et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al.	(OPAL Collab.) (OPAL Collab.) (OLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (DELPHI Collab.) (L3 Collab.) (DELPHI Collab.) (ARGUS Collab.) (CLEO Collab.) (ALEPH Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE	97U 97V 97 97 97 97 97 96B 96C 96H 96Q 96P 96Q 96E 96D 96T 96C 96B 96D	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4462 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000 ZPHY C72 377 PR D53 1039 PRL 76 1570 PL B369 186 ZPHY C71 31	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al. D. M. Asner et al. B. C. Barish et al. M. Bishai et al. D. Buskulic et al.	(OPAL Collab.) (OPAL Collab.) (OLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (ARGUS Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE ABE ABE ABE ABE ABE ABE ABE ABE ABREU ACCIARRI ADAM ALBRECHT ALEXANDER ASNER BARISH BISHAI BUSKULIC BUSKULIC BUSKULIC DUBOSCQ GIBAUT PDG	97U 97V 97 97 97 97 97 96B 96C 96B 96Q 96B 96D 96T 96V 96 96B 96S 96B 96S 96S 96S	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 2015 PRL 76 4462 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000 ZPHY C72 377 PR D53 1039 PRL 76 1570 PL B369 186 ZPHY C71 31 PL B384 471 PRL 76 3898 PR D53 4734 PR D54 1	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al. B.C. Barish et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al. J.E. Duboscq et al. D. Gibaut et al.	(OPAL Collab.) (OPAL Collab.) (OLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CLEO Collab.) (CDF Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE ABE ABE ABE ABE ABE ABE ABE ABE ABREU ACCIARRI ADAM ALBRECHT ALEXANDER ASNER BARISH BISHAI BUSKULIC BUSKULIC DUBOSCQ GIBAUT PDG ABE	97U 97V 97 97 97 97 97 96B 96C 96B 96C 96B 96B 96B 96B 96B 96S 96B 96S 96S 96S 96S 96S 96S 96S 96S	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 2015 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000 ZPHY C72 377 PR D53 1039 PRL 76 1570 PL B369 186 ZPHY C71 31 PL B384 471 PRL 76 3898 PR D53 4734 PR D54 1 PRL 75 3068	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al. D. M. Asner et al. B.C. Barish et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al. D. Gibaut et al. F. Abe et al.	(OPAL Collab.) (OPAL Collab.) (OLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (ARGUS Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE	97U 97V 97 97 97 97 97 96B 96C 96H 96Q 96E 96D 96D 96T 96V 96 96 96 96 96 96 96 96 96 96 96 96 96	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 4662 PRL 76 2015 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000 ZPHY C72 377 PR D53 1039 PRL 76 1570 PL B369 186 ZPHY C71 31 PL B384 471 PRL 76 3898 PR D53 4734 PR D54 1 PRL 75 3068 PL B357 255	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al. D. M. Asner et al. B.C. Barish et al. D. Buskulic et al. D. Buskulic et al. D. Gibaut et al. F. Abe et al. F. Abe et al.	(OPAL Collab.) (OPAL Collab.) (OLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (ARGUS Collab.) (CLEO Collab.)
ACKERSTAFF ACKERSTAFF ARTUSO ASNER ATHANAS BUSKULIC BUSKULIC FU JESSOP ABE ABE ABE ABE ABE ABE ABE ABE ABE ABREU ACCIARRI ADAM ALBRECHT ALEXANDER ASNER BARISH BISHAI BUSKULIC BUSKULIC DUBOSCQ GIBAUT PDG ABE	97U 97V 97 97 97 97 97 96B 96C 96B 96C 96B 96B 96B 96B 96B 96S 96B 96S 96S 96S 96S 96S 96S 96S 96S	ZPHY C76 401 ZPHY C76 417 PL B399 321 PRL 79 799 PRL 79 2208 PL B395 373 ZPHY C75 397 PRL 79 3125 PRL 79 4533 PR D53 3496 PRL 76 2015 PRL 76 2015 PRL 76 4675 PR D54 6596 ZPHY C71 539 ZPHY C72 17 PL B383 487 ZPHY C72 207 PL B374 256 PRL 77 5000 ZPHY C72 377 PR D53 1039 PRL 76 1570 PL B369 186 ZPHY C71 31 PL B384 471 PRL 76 3898 PR D53 4734 PR D54 1 PRL 75 3068	K. Ackerstaff et al. K. Ackerstaff et al. M. Artuso et al. D. Asner et al. M. Athanas et al. D. Buskulic et al. D. Buskulic et al. X. Fu et al. C.P. Jessop et al. F. Abe et al. F. Abe et al. F. Abe et al. P. Abreu et al. P. Abreu et al. M. Acciarri et al. W. Adam et al. H. Albrecht et al. J.P. Alexander et al. D. M. Asner et al. B.C. Barish et al. D. Buskulic et al. D. Buskulic et al. D. Buskulic et al. D. Gibaut et al. F. Abe et al.	(OPAL Collab.) (OPAL Collab.) (OLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ALEPH Collab.) (ALEPH Collab.) (CLEO Collab.) (CDF Collab.) (DELPHI Collab.) (DELPHI Collab.) (ARGUS Collab.) (CLEO Collab.)

ACCIARRI	95I	PL B363 137	M. Acciarri et al.	(L3 Collab.)
ADAM	95	ZPHY C68 363	W. Adam et al.	(DELPHI Collab.)
AKERS	95J	ZPHY C66 555	R. Akers et al.	(OPAL Collab.)
AKERS ALEXANDER	95T 95	ZPHY C67 379 PL B341 435	R. Akers <i>et al.</i> J. Alexander <i>et al.</i>	(OPAL Collab.)
Also	95C	PL B347 469 (erratum)	J. Alexander <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
BARISH	95	PR D51 1014	B.C. Barish <i>et al.</i>	(CLEO Collab.)
BUSKULIC	95N	PL B359 236	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
ABE	94D	PRL 72 3456	F. Abe <i>et al.</i>	` (CDF Collab.)
ABREU		PL B338 409	P. Abreu <i>et al.</i>	(DELPHI Collab.)
AKERS	94C	PL B327 411	R. Akers et al.	(OPAL Collab.)
AKERS	94H 94J	PL B336 585 PL B337 196	R. Akers <i>et al.</i> R. Akers <i>et al.</i>	(OPAL Collab.)
AKERS AKERS	94J 94L	PL B337 393	R. Akers <i>et al.</i>	(OPAL Collab.) (OPAL Collab.)
ALAM	94	PR D50 43	M.S. Alam <i>et al.</i>	(CLEO Collab.)
ALBRECHT	94	PL B324 249	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	94G	PL B340 217	H. Albrecht et al.	(ARGUS Collab.)
AMMAR	94	PR D49 5701	R. Ammar et al.	(CLEO Collab.)
ATHANAS	94	PRL 73 3503	M. Athanas <i>et al.</i>	(CLEO Collab.)
Also BUSKULIC	95 94B	PRL 74 3090 (erratum) PL B322 441	M. Athanas <i>et al.</i> D. Buskulic <i>et al.</i>	(CLEO Collab.) (ALEPH Collab.)
PDG	94D 94	PR D50 1173	L. Montanet <i>et al.</i>	(CERN, LBL, BOST+)
PROCARIO	94	PRL 73 1306	M. Procario <i>et al.</i>	(CLEO Collab.)
STONE	94	HEPSY 93-11		,
ABREU	93D	ZPHY C57 181	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	93G	PL B312 253	P. Abreu et al.	(DELPHI Collab.)
ACTON ALBRECHT	93C	PL B307 247	P.D. Acton <i>et al.</i> H. Albrecht <i>et al.</i>	(OPAL Collab.)
ALBRECHT	93 93E	ZPHY C57 533 ZPHY C60 11	H. Albrecht <i>et al.</i>	(ARGUS Collab.) (ARGUS Collab.)
ALEXANDER	93B	PL B319 365	J. Alexander et al.	(CLEO Collab.)
AMMAR	93	PRL 71 674	R. Ammar et al.	(CLEO Collab.)
BARTELT	93	PRL 71 1680	J.E. Bartelt <i>et al.</i>	(CLEO Collab.)
BATTLE	93	PRL 71 3922	M. Battle <i>et al.</i>	(CLEO Collab.)
BEAN BUSKULIC	93B 93D	PRL 70 2681 PL B307 194	A. Bean <i>et al.</i> D. Buskulic <i>et al.</i>	(CLEO Collab.) (ALEPH Collab.)
Also	93D 94H	PL B325 537 (errata)	D. Buskuiic et al.	(ALLFIT CONAD.)
BUSKULIC	93K	PL B313 498	D. Buskulic et al.	(ALEPH Collab.)
SANGHERA	93	PR D47 791	S. Sanghera et al.	`(CLEO Collab.)
ALBRECHT	92C	PL B275 195	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	92G	ZPHY C54 1	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT BORTOLETTC	92L	ZPHY C55 357 PR D45 21	H. Albrecht <i>et al.</i> D. Bortoletto <i>et al.</i>	(ARGUS Collab.)
HENDERSON	92	PR D45 21 PR D45 2212	S. Henderson <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
KRAMER	92	PL B279 181	G. Kramer, W.F. Palmer	(HAMB, OSU)
ALBAJAR	91C	PL B262 163	C. Albajar et al.	(UA1 Collab.)
ALBAJAR	91E	PL B273 540	C. Albajar et al.	(UA1 Collab.)
ALBRECHT	91B	PL B254 288	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT ALBRECHT	91C 91E	PL B255 297 PL B262 148	H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(ARGUS Collab.) (ARGUS Collab.)
BERKELMAN	91	ARNPS 41 1	K. Berkelman, S. Stone	(CORN, SYRA)
"Decays of		esons"	The Berneman, G. Brene	(6011, 6111)
FULTON	91	PR D43 651	R. Fulton et al.	(CLEO Collab.)
ALBRECHT	90B	PL B241 278	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT ANTREASYAN	90J	ZPHY C48 543	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BORTOLETTO		ZPHY C48 553 PRL 64 2117	D. Antreasyan <i>et al.</i> D. Bortoletto <i>et al.</i>	(Crystal Ball Collab.) (CLEO Collab.)
ELSEN	90	ZPHY C46 349	E. Elsen <i>et al.</i>	(JADE Collab.)
ROSNER	90	PR D42 3732		,
WAGNER	90	PRL 64 1095	S.R. Wagner et al.	(Mark II Collab.)
ALBRECHT	89C	PL B219 121	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT ALBRECHT	89G 89J	PL B229 304 PL B229 175	H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(ARGUS Collab.) (ARGUS Collab.)
ALBRECHT	89L	PL B232 554	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ARTUSO	89	PRL 62 2233	M. Artuso <i>et al.</i>	(CLEO Collab.)
AVERILL	89	PR D39 123	D.A. Averill et al.	(HRS Collab.)
AVERY	89B	PL B223 470	P. Avery et al.	(CLEO Collab.)
BEBEK BORTOLETTO	89 89	PRL 62 8 PRL 62 2436	C. Bebek <i>et al.</i> D. Bortoletto <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
2011 OLL 110	03		2. Doitoietto et al.	(CLLO Collab.)

BORTOLETTO 89B ALBRECHT 88F ALBRECHT 87C ALBRECHT 87C ALBRECHT 87I ALBRECHT 87J AVERY 87 BEAN 87B BEBEK 87 ALAM 86 ALBRECHT 86F PDG 86 CHEN 85 HAAS 85 AVERY 84 GILES 84	PL B209 119 PL B215 424 PL B185 218 PL B199 451 PL B199 245 PL B197 452 PL B183 429 PR D36 1289 PR D34 3279 PL B182 95 PL 170B PR D31 2386 PRL 55 1248 PRL 53 1309 PR D30 2279	D. Bortoletto et al. H. Albrecht et al. P. Avery et al. A. Bean et al. C. Bebek et al. M.S. Alam et al. H. Albrecht et al. M. Aguilar-Benitez et al. A. Chen et al. J. Haas et al. P. Avery et al. R. Giles et al. S. Bebronds et al.	(CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CEO, Collab.) (CEO, Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
BEHRENDS 83	PR D30 2279 PRL 50 881	R. Giles <i>et al.</i> S. Behrends <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)